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Abstract
Speaker recognition systems based on Convolutional Neural
Networks (CNNs) are often built with off-the-shelf backbones
such as VGG-Net or ResNet. However, these backbones were
originally proposed for image classification, and therefore may
not be naturally fit for speaker recognition. Due to the pro-
hibitive complexity of manually exploring the design space, we
propose the first neural architecture search approach for the
speaker recognition tasks, named as AutoSpeech. Our algo-
rithm first identifies the optimal operation combination in a neu-
ral cell and then derives a CNN model by stacking the neural
cell for multiple times. The final speaker recognition model
can be obtained by training the derived CNN model through
the standard scheme. To evaluate the proposed approach, we
conduct experiments on both speaker identification and speaker
verification tasks using the VoxCeleb1 dataset. Results demon-
strate that the derived CNN architectures from the proposed
approach significantly outperform current speaker recognition
systems based on VGG-M, ResNet-18, and ResNet-34 back-
bones, while enjoying lower model complexity.
Index Terms: speaker recognition, neural architecture search

1. Introduction
Speaker recognition aims to retrieve the identity of the speaker
given his/her utterances. According to the content similarity of
the utterances, speaker recognition can be categorized into text-
dependent and text-independent, the latter being more general
and realistic for practical applications. Additionally, accord-
ing to different application settings, speaker recognition usually
fall into one of the two categories: speaker identification (SID)
and speaker verification (SV). SID identifies the speaker of an
utterance from a known speaker set, and SV determines if the
speaker of an utterance matches its given enrollment.

End-to-end speaker recognition systems [1, 2, 3, 4, 5,
6] have emerged in recent years and achieved the state-of-
the-art performance. These models usually admit a three-
stage pipeline: (1) A deep neural network, typically Convolu-
tional Neural Networks (CNNs) or Recurrent Neural Networks
(RNNs), as a feature extractor to generate frame-wise speaker
embedding; (2) a temporal aggregation layer, to produce fixed
length speaker embedding (i.e., d-vector); (3) A loss function
to optimize the entire network. In testing stage, the network
along with the temporal aggregation layer are first used to pro-
duce d-vectors for the testing utterances, and then a similar-
ity metric (e.g., cosine similarity) follows to generate the final
same/different speaker decision based on the d-vectors.

Most CNN/RNN-based speaker recognition works focus on
improving the effectiveness of the speaker embedding through

* Equal contribution.

advanced training objectives and temporal aggregation strate-
gies [7, 8, 3, 9, 5]. By contrast, network architecture design has
received relatively less attention. Existing studies usually use
off-the-shelf backbones that have been shown to be successful
in standard tasks such as image classification (e.g., VGG-Net
[10], ResNet [11]). However, these backbones are not designed
for and may not be optimal for speaker recognition. Meanwhile,
in other speech processing tasks such as speech recognition and
speech synthesis, the improved design of network architecture
has already yielded evident performance gains [12, 13]. In view
of those, we conjecture that enhancing network architecture
design matters for improving speaker recognition perfor-
mance too. Yet as the major hurdle for improving the backbone
of any new task, manually exploring the gigantic design space
of deep networks is notoriously tedious and ad-hoc.

This paper proposes an automated approach to identify the
optimal CNN architecture for text-independent speaker recog-
nition, named as AutoSpeech. It is inspired by recent advances
on neural architecture search (NAS) [14, 15, 16, 17, 18], which
has proven success in designing deep networks that outperform
hand-designed best performers in various tasks [19, 20, 21, 22].
We evaluated the effectiveness of AutoSpeech on both SID and
SV tasks using VoxCeleb1 dataset [23]. Our derived CNN ar-
chitectures significantly outperforms several networks used in
state-of-the-art speaker recognition systems (based on VGG-M,
ResNet-18, and ResNet-34), at lower model complexities.

2. Literature Review
2.1. Speaker Recognition

Earlier speaker recognition systems used spectral features (e.g.,
MFCCs) as the speaker embedding [24, 25], but these sys-
tems have been superseded by systems based on “i-vectors”
[26, 27, 28]. An i-vector takes speech from a speaker and
uses it to adapt a speaker-independent Gaussian Mixture Model
(GMM, referred to as a Universal Background Model). The
means of the adapted GMM are concatenated to form a su-
pervector, which is then reduced in dimensionality using joint
factor analysis. More recently, end-to-end speaker recognition
[1, 2, 3, 4, 5] systems have been shown to surpass the i-vector
based systems and achieve state-of-the-art performance. Variani
et al. first proposed a neural network based speaker recognition
system. In their work, they used maxout fully-connected net-
work to produce d-vectors, and then they used cosine similarity
to make the final decision. Following this, advanced network
architectures such as CNNs [3, 5, 9, 8, 29] and RNNs [5, 2] are
used for feature extracts. Additionally, advanced training objec-
tives [2, 8, 29] and temporal aggregation strategies [7, 3, 9, 5]
are also proposed to improve speaker recognition performance.
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Figure 1: Illustration of a neural cell. During the search pro-
cess, the intermediate nodes (x2 to x5) are densely connected
(red arrows), and the optimal combination of the operations on
these edges are found at the end of the searching process. Dur-
ing architecture derivation, only the two operations with high-
est softmax probabilities (excepting zero operation) are retained
for each intermediate node.

2.2. Neural Architecture Search

The goal of neural architecture search is to search for an opti-
mal network architecture for a given task. To accomplish this, a
search space will be constructed firstly, which may vary across
different tasks and objectives. Towards accurate image classi-
fication, many previous work [14, 15, 16] adopt a cell-based
search space with complicated inner connection. To improve
its efficiency, [30, 31, 32] adopts a sequential-based search
space, benefiting a lot in reducing latency and FLOPs inher-
ently. More recently, neural architecture search has also been
applied to other tasks (e.g., image segmentation [20, 33], gen-
erative adversarial network [21], and phone recognition [19]),
where task-specific search spaces are usually designed. To con-
duct architecture search over the defined search space, various
optimization methods are proposed. Barret and Quoc first use
the reinforcement learning (RL) to search for architecture[17],
where a RNN serves as an architecture sampler. However, it is
quite time-consuming (2,000 GPU days). To address this lim-
itation, Hieu et al. propose to use weight sharing (ENAS[16])
to accelerate RL-based search method. Furthermore, Liu et al.
present a gradient-based method [14] to accelerate the searching
process.

3. Methods
In this section, we introduce how to use NAS to automatically
find the optimal CNN architecture for speaker recognition. Fol-
lowing previous NAS methods [14, 17], we use a two-stage
pipeline. First, we search for the optimal architecture of a neural
cell that consists of several different types of operations. Sec-
ond, we derive a CNN model using the searched cell, and then
train the CNN model through the standard speaker recognition
training scheme. We first define the search space of a neural cell
in Section 3.1. Then, we describe the NAS algorithm in Section
3.2. Finally, we introduce how to derive a CNN model using
searched neural cells and how to train it, in Section 3.3.

3.1. Neural cell and search space

During the NAS process, the network is constructed by stack-
ing multiple neural cells. We define a neural cell to have N = 7

Algorithm 1 Neural architecture search algorithm

Inputs: Training set Dtrain, validation set Dval.
Output: Searched neural cell architecture.

while not converge do
- Update weight parameters ω by ∇ωLtrain(ω, α) on
Dtrain.
- Update architecture parameters α by ∇αLval(ω, α) on
Dval.

end while
- Derive the neural cell architecture from α by retaining the
two operations with highest softmax probabilities for each
node.

nodes, as illustrated in Figure 1. A cell can be viewed as a
directed acyclic graph, where a node xi corresponds to a ten-
sor and a directed edge (i, j) corresponds to an operation oij(·)
Following [14, 17, 15, 34], we set each cell to have two input
nodes, four intermediate nodes, and one output node. The input
nodes are set equal to the outputs of previous two cells, respec-
tively (e.g., The first node x0 in the k-th cell is equal to the
output of the (k-2)-th cell, and the second node x1 in the k-th
cell is equal to the output of the (k-1)-th cell). The four inter-
mediate nodes (x2 to x5) are densely connected (red arrows in
Figure 1, 14 edges in total), and each of them is computed as
the summation based on all of its predecessors:

xj :=
∑

i<j

oij(xi) (1)

A best combination of the operations on these edges are found
at the end of the searching process. Finally, the output node x7

is defined as the concatenation of all intermediate nodes.
The search space O defines all possible candidate opera-

tions in a neural cell. We include the following 8 operations
that are prevalent in modern CNNs in our search space, and the
resulting search space size is 814 (14 edges, 8 candidate opera-
tions for each edge).

• 3×3 separable convolution

• 5×5 separable convolution

• 3× 3 dilated convolution

• 5× 5 dilated convolution

• 3× 3 average pooling

• 3× 3 max pooling

• skip connection

• no connection (zero)

We stack the neural cell 8 times to form the backbone CNN
during the NAS process. Additionally, we define two types of
neural cells: normal cells (cells that keep the spatial resolution
of the feature tensor) and reduction cells (cells that divide the
spatial resolution by 2 and multiply the number of filters by
2). Following previous studies [35, 14, 15], we set the cells
whose position is located at the 1/3 and 2/3 of the total depth
to reduction cells, and the other cells are normal cells. All the
normal cells share the same architecture, and all the reduction
cells share the same architecture, respectively. The output of
the last cell is then fed to an average pooling layer, followed by
a fully-connected layer that outputs the softmax probability.

3.2. Neural architecture search

To search for the optimal operation combinations in a neural
cell, we define two sets of parameters: (1) a set of architecture
parameters α that controls the choice of operations and (2) a set
of weight parameters ω of all operations in O. We use archi-
tecture parameters αij ∈ R

|O| to relax the categorical choice
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of a particular operation oij on edge (i, j) to a softmax over all
possible operations in the search space:

ôij(xi) :=
∑

o∈O

exp(αo
ij)∑

o′∈O exp(αo′
ij )

o(xi) (2)

As a result, the search space becomes continuous, and NAS can
be realized by optimizing the architecture parameters. In ad-
dition, since we have two types of neural cells (normal cells
and reduction cells), the architecture parameters becomes α =
(αnormal, αreduction), where αnormal are shared among all
normal cells and αreduction shared among all reduction cells.

We use a differentiable NAS algorithm [14] to learn α and
ω jointly through back-propagation. We denote the training
loss as Ltrain(ω, α) and the validation loss as Lval(ω, α). The
NAS process can be viewed as a bi-level optimization problem
[36] (eq. 3), which aims to find an optimal α that minimizes
Lvalidation(ω, α), where the optimal ω is determined by mini-
mizing Ltrain(ω, α).

min
α

Lval(ω, α) (3)

s.t. ω = argmin
ω

Ltrain(ω, α)

In our task, we use cross-entropy loss for both Ltrain and Lval:

L := −
K∑

k=1

I(y = k) log pk (4)

where I(·) is the indicator function, K is the number of speak-
ers, y is the ground-truth speaker, and pk is the softmax proba-
bility of speaker k.

In practice, this bi-level optimization problem can be solved
iteratively, as shown in Algorithm 1. During each iteration, we
perform two steps: weight parameters update and architecture
parameters update. In the weight parameters update step, we
update ω by minimizing the the cross-entropy loss on training
set Ltrain, while fixing α. In the architecture parameter up-
date step, we update α by minimizing the cross-entropy loss on
validation set Lval, while fixing ω.

The algorithm terminates when the choice of operations in
the neural cell converges, which is empirically measured by the
entropy of the architecture parameters α as:

E =
∑

i,j

∑

o∈O

αo
ij logα

o
ij (5)

A smaller the entropy indicates a higher confidence of choos-
ing a particular operation among all possible operations. As a
result, we consider the architecture of the neural cell being con-
verged when the entropy does not decrease.

3.3. Architecture derivation

Once the search process is converged, we can derive a neural
cell architecture from the learned architecture parameters. For
each node xj , we retain two operations with highest softmax
probabilities (excepting zero operation) from all its predeces-
sors xi, ∀i < j, following [14]. The softmax probability of an
operation o between nodes (i, j) is defined as:

poij :=
exp(αo

ij)∑
o′∈O exp(αo′

ij )
(6)

With the derived neural cell, we construct a CNN by stacking
multiple neural cells. We explore different number of neural

cells and different number of channels in our experiments, as
we will describe in Section 4.3. Similar to the CNN architecture
in NAS process, we still set the cells whose position is located
at the 1/3 and 2/3 of the total depth to reduction cells, and the
other cells are normal cells.

To obtain the final speaker recognition model, we train
the CNN model from random initialized weights (denoted as
training from scratch) on training set by minimizing the cross-
entropy loss in eq. 4. We use the output of the average pooling
layer of the trained CNN as the speaker embedding.

4. Experiments
4.1. Datasets

We conducted experiments on VoxCeleb1 [23] dataset consist-
ing of 153,516 utterances produced by 1,251 speakers. Vox-
Celeb1 has an identification split and a verification split for SID
and SV, respectively. The identification split divides the en-
tire dataset to a training set of 138,316 utterances, a develop-
ment set of 6,904 utterances, and a test set of 8,251 utterances.
All the three sets were produced by the same 1,251 speakers.
The verification split divides the dataset into a training set of
148,642 utterances produced by 1,211 speakers and a test set of
4,874 utterances produced by 40 speakers. The test speakers do
not overlap with training. The verification split also provided
37,720 trial pairs for SV evaluation. During the NAS process,
we followed the identification split. These subsets were used
as introduced in Section 3.2. During training from scratch, we
train different models for SID and SV tasks following identifi-
cation split and verification split, respectively.

4.2. Implementation details

For each utterance, we extracted a 257-dim spectrogram with a
25ms window and 10ms shift. We performed mean and variance
normalization on each frequency bin of the spectrogram. To
form a mini-batch, we randomly selected 3-second segments
from utterances. As a result, the input size is 257× 300.

We implemented the proposed method based on PyTorch
[38] and NVIDIA TITAN RTX GPU1. During the NAS process,
the network with 8 neural cells was training using the algorithm
in Section 3.2 for 50 epochs with a batch size of 16. We set the
initial channels to 16, due to the limited GPU memory. We used
Adam Optimizer to optimize both the architecture parameters
α and weight parameters ω. We set the initial learning rate of
the optimizer for α to 10−3, and we set that of the optimizer
for ω to 10−2. Both learning rate were annealed down to zero
following a cosine schedule [39]. We set the weight decay of
both optimizers to 3×10−4. The entire searching process takes
around 5 days on a single GPU.

During training from scratch, the model was trained for 300
epochs with a batch size of 128. We explored different initial
channels, as we will describe in Section 4.3. We used Adam Op-
timizer with initial learning rate of 10−2, which was annealed
down to zero following a cosine schedule. We set the weight
decay of the optimizer to 3× 10−4. The entire training process
takes around 1 day on a single GPU.

4.3. Experimental Setup

We explored the effect of using different number of neural cells
and different number of channels during training from scratch.
First, we derived a relatively light-weight model by setting the

1Codes available at https://github.com/TAMU-VITA/AutoSpeech
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Table 1: Speaker identification and speaker verification performance on VoxCeleb1 dataset. Dimensions indicate the dimensionality of
the speaker embedding. N denotes the number of neural cells, and C denotes the number of initial channels.

Method Top-1(%) Top-5(%) EER (%) Dimensions Parameters

VGG-M [23] 80.50 92.1 10.20 1,024 67 million
ResNet-18 [8, 29] 79.48 90.97 12.30 512 12 million

ResNet-34 [37, 3, 9] 81.34 94.49 11.99 512 22 million

Proposed (N = 8, C = 64) 84.45 94.74 9.13 1,024 5 million
Proposed (N = 30, C = 64) 83.45 94.21 9.01 1,024 18 million
Proposed (N = 8, C = 128) 87.66 96.01 8.95 2,048 18 million

Figure 2: Architecture of the searched normal cell.

number of neural cells to N = 8 and the number of initial chan-
nels C = 64. Following this, we tried to construct two larger
models by growing the number of neural cells and the number of
channels, respectively. For a fair comparison between the two
large models, we kept the total number of parameters the same
in the two models. Consequently, we have a second model with
N = 30, C = 64, and a third model with N = 8, C = 128.
The embedding dimensions and the number of parameters of
these models are shown in Table 1.

When evaluating the derived architecture for speaker iden-
tification, we followed the identification split of VoxCeleb1
dataset. We trained the derived CNN on training set and eval-
uated it on testing set. To obtain utterance-level speaker em-
beddings, we divided each test utterance into 3-second seg-
ments with 1.5-second overlap. Following this, we extracted the
speaker embeddings on these segments, and used the average
of these embeddings as the utterance-level speaker embedding.
We computed Top-1 and Top-5 accuracies on these utterance-
level speaker embeddings to measure the performance.

When evaluating the derived architecture for speaker verifi-
cation, we followed the verification split of VoxCeleb1 dataset.
We trained the derived CNN on training set and evaluated it on
the trial pairs. We obtain utterance-level speaker embeddings
as described above, and we used cosine similarity as the simi-
larity metric. We used Equal Error Rate (EER) to measure the
performance, which is commonly used for speaker verification
systems [23].

4.4. Results and Design Insights

We visualize the architectures of the searched cells in Figures
2 and 3. We report the results on speaker identification and
speaker verification, as shown in Table 1.

We first analyze the effect of the number of neural cells
and the number of channels in the proposed method. We found
that the model with 8 neural cells and 128 initial channels
achieved the best performance among the proposed models on

Figure 3: Architecture of the searched reduction cell.

both identification (Top-1: 87.66%, Top-5: 96.01%) and ver-
ification (EER: 8.95%). Additionally, the two large models
both outperform the light-weight one. When comparing be-
tween the two large models, we found that the model with
(N = 8, C = 128) achieves better performance that the model
with (N = 30, C = 64). This result suggests that increasing
the number of channels is more effective than increasing the
number of neural cells, when constructing a larger model from
the searched neural cell.

We next compared the proposed method against three CNN
architectures that were commonly used for speaker recognition:
VGG-M [23], ResNet-18 [8, 29], and RestNet-34 [37, 3, 9]. As
there are no open-source implementations from previous works
on ResNet-18 and ResNet-34, we implemented these two archi-
tecture under similar training settings as the proposed method
for a fair comparison. As shown in Table 1, all our proposed
models outperform the baseline CNN architectures. Specifi-
cally, our light-weight model (N = 8, C = 64) outperforms
ResNet-34, the best baseline architecture, by 3.11% Top-1 and
2.86% EER, with only 5 million parameters (ResNet-34: 22
million parameters). Our best model (N = 8, C = 128) outper-
forms ResNet-34 by 6.32% Top-1 and 3.04% EER, with only
18 million parameters. These results showed that the searched
CNN architectures significantly improved both speaker identi-
fication and speaker verification performance, while achieving
higher parameter efficiency and enjoying lighter weights.

5. Conclusions
This paper proposed an automatic approach to find the optimal
CNN architecture for speaker recognition. The proposed ap-
proach has two stages. The first stage searches for the optimal
architecture of a neural cell consisting of several different types
of operations. The second stage derives a CNN model by stack-
ing the searched neural cell several times and then trains the
CNN model through the standard speaker recognition training
process. Evaluation results on both speaker identification and
speaker verification demonstrate significantly improved perfor-
mance, while having lower model complexity.
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