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Abstract
The manner that human encodes emotion information within an
utterance is often complex and could result in a diverse salient
acoustic profile that is conditioned on emotion types. In this
work, we propose a framework in imposing a graph attention
mechanism on gated recurrent unit network (GA-GRU) to im-
prove utterance-based speech emotion recognition (SER). Our
proposed GA-GRU combines both long-range time-series based
modeling of speech and further integrates complex saliency us-
ing a graph structure. We evaluate our proposed GA-GRU on
the IEMOCAP and the MSP-IMPROV database and achieve a
63.8% UAR and 57.47% UAR in a four class emotion recog-
nition task. The GA-GRU obtains consistently better perfor-
mances as compared to recent state-of-art in per-utterance emo-
tion classification model, and we further observe that different
emotion categories would require distinct flexible structures in
modeling emotion information in the acoustic data that is be-
yond conventional left-to-right or vice versa.
Index Terms : speech emotion recognition, graph, attention
mechanism, recurrent neural network

1. Introduction
Using speech as the main communication medium has become
prevalent in a variety of commercialized applications, e.g., com-
panion robots [1], voice assistants [2], and autonomous agents
[3]. The ability to further extract emotional content from speech
beyond linguistic message has sparked a large body of works
in speech emotion recognition (e.g., [4, 5]). With the surge
of deep learning techniques, many speech emotion recognition
(SER) models used a variety of network architectures inspired
from different research domains, e.g., computer vision and nat-
ural language processing, resulting in an improved recognition
accuracy beyond conventional machine learning methods. For
example, Hazarika et al. developed a deep neural network with
memory cell [6], and Suping et al. proposed a semi-supervised
multi-path generative neural network [7] for SER tasks, and also
Siddique et al. proposed a variational autoencoder based LSTM
model [8] as an improved SER model.

The natural course of speech signal results in many variants
of SER algorithms to use (B)LSTM network as the main com-
ponent in capturing emotionally-relevant information of an ut-
terance either in a left-to-right and/or right-to-left manner, i.e.,
similar to automatic speech recognition (ASR). Such a mecha-
nism follows closely the development of RNN model, i.e., from
simple RNN to complexly considering the bidirectional gated
LSTM model. Several recent SER research in this regard in-
cludes: Yeh et al. [9] utilized a bidirectional RNN structure
to model the temporal relationship between the interlocutors
over the interaction; Zadeh et al. proposed to use multi-attention

LSTM-based (MARN) model [10] to aggregate multimodal in-
formation within an utterance. Han et al. [11] utilized a frame-
work based on LSTM claiming to effectively model emotion
over time in an utterance. These works also point to the robust-
ness of SER performances when considering temporal informa-
tion in the speech data.

While speech, as a time-series signal, could intuitively be
modeled as a temporal sequence of local acoustic descriptors
to obtains competitive SER performances, both theoretical and
empirical evidences have stated that different types of emotions
would result in a diverse profile of acoustic manifestation that
is beyond left-to-right and/or vice versa. In fact, psychologists
have stated that emotion is induced through successive self-
realizations, which indicates the moment of emotional arousal
is critical and its expressive process can either be discrete or
continuous [12]. The variable intonation profiles exist between
different emotion types has particularly been well documented
[13]; Busso et al. also demonstrated that there exists emotion-
ally salient aspect within an utterance by examining different
acoustic features [14]. While (B)LSTM based model provides
an effective mean of capturing long range time-series informa-
tion in speech signal, its structure could limit the emotion mod-
eling capacity and likely ignores potential non-sequential yet
emotionally-salient information.

In this work, we propose a novel architecture of graph at-
tentive bi-directional gated recurrent neural net (GA-GRU). In-
stead of only considering the left-to-right or right-to-right infor-
mation in the BiGRU model, we further emphasize the struc-
tural relationship within a sentence, i.e., imposing a within-
utterance frame-wise graph structure that modulates the atten-
tion weights on a bi-directional GRU’s hidden sequences, to fur-
ther enable complex modeling of emotion modulation on acous-
tic profile. GA-GRU combines both the power of attentional
long range time series modeling with the salient frame-wise
graph structure within an emotional utterance. We evaluate GA-
GRU on two widely used benchmark large emotion corpora,
the IEMOCAP [15] and the MSP-IMPROV [16]. GA-GRU ob-
tains not only an improved UAR over attention BiGRUs in the
4 emotions classification task (Happiness, Neutrality, Sadness
and Anger), but also achieves a state-of-the-art per-utterance
emotion recognition rates compared to the well-known recent
works. Interestingly, we also observe that emotion class, such
as sadness, require a non-sequential graph structure which is
critical in improving the recognition performance.

2. Research Methodology
2.1. Dataset and Acoustic Features

In the following sections, we will briefly introduce the two
datasets and the acoustic features used in this work.
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Figure 1: Architecture of GA-GRU, the input is 78 dimension Emobase LLDs and graph is built by the hidden output of Bi-GRU; After
graph attention mechanism, the representation will be classified into 4 categories.

2.1.1. The IEMOCAP and The MSP-IMPROV

The IEMOCAP and the MSP-IMPROV are affective dyadic in-
teraction English databases. Each session including two actors
(1 male and 1 female), and totally 12 hours (five sessions) and 9
hours (six sessions) in the IEMOCAP and the MSP-IMPROV
respectively. All utterances were annotated with categorical
emotion labels, in this paper, we choose four major emotion cat-
egories: neutrality, happiness(including excited), sadness and
anger, which results in 5531 utterances in the IEMOCAP and
7798 utterances in the MSP-IMPROV.

2.1.2. Acoustic Low-level Descriptors

We extract 78 dimensional frame level acoustic descriptors us-
ing the openSMILE toolkit[17] with the Emobase LLDs config
file; it includes low-level descriptors of PCM loudness, Mel-
frequency cepstral coefficients (MFCCs), LSP Frequency, F0
Envelope, jitter etc [18]. Per-speaker z-normalization is con-
ducted on all the features, and in order to decrease computation
time, we further average the features of every 5 frames to down-
sample the frame number.

2.2. Graph Attentive Bidirectional GRU (GA-GRU)

In this paper, we propose a graph attentive bidirectional GRU
(GA-GRU), which uses attention mechanism to reweight the
important time segments and incorporate the use of canonical
graph to integrate the cross-frame relationship. The temporal
information is captured by a BiGRU network, attention mech-
anism is applied to enhance the salient segment, and graph en-
ables such saliency to be connected across time steps. We will
describe each component in the following.

2.2.1. Bidirectional Gated Recurrent Unit Network

Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) are the two most common used recurrent neural net-
works for time series; however, the computation complexity is
much lower for GRU than LSTM, and the performance is often
comparable. Bidirectional GRU is used as the basic building
block of our GA-GRU network. The input feature of i-th ut-
terance and time step t is encoded into two hidden vectors (one
forward and one backward) as the following,

←→
hi,t =

←−→
GRU(Xi,t), t ∈ [1, T ] (1)

hi =
−→
hi,t +

←−
hi,t (2)

where X is the feature vector of an utterance, T is the termi-
nated time step of each utterance. In order to reduce the di-
mension of our features, we sum the two vectors derived from
forward and backward GRUs.

2.2.2. Attention Mechanism

Attention mechanism is widely used in time sequence models
in order to emphasize those time steps that are discriminative
for the given task with learnable weights. In specifics, we de-
fine a score function s(·) to transform the hidden dimensions of
BiGRU to attention hidden dimensions,

s(hi) = tanh(Linear(hi)), s(hi) ∈ RB×T×AT (3)

αt =
exp(uT · s(hi))∑T
i=1 exp(u

T · s(hi))
(4)

where B is batch size, T is time step, AT is attention hidden
dimensions, u ∈ R1×AT is the trainable parameter (which is
also a normal distribution with mean equals to zero), and hi is
the feature representation of the Sith utterance.

2.2.3. Graph Modulated Attention

Our proposed use of graph modulated attention is inspired by
the recent success of graph convolutional neural network (GCN)
[21], which learns a graph-constrained image representation for
improved classification task in computer vision [22]. Inspired
by GCN, we construct a graph from the time sequence hidden
dimensions of BiGRU to integrate emotion saliency not only se-
quentially but with cross time connection. Specifically, we first
build a graph that encodes the distances (dot products) between
hidden dimensions of every time frame within an utterance as
the edge strength:

Gl
i,j =

||ReLU(hl
ih

l
j
T
)||2∑

i′ ||ReLU(hl
i′h

l
j
T
)||2 + ε

(5)

where hl
i is the ith time step of lth utterance and ε is a small

numerical value to avoid division by zero. In the denominator,
we sum it over the entire row to make sure ith time step relates
to all other time steps has sum equals to 1. We construct this
graph at each batch and multiply it through the hidden dimen-
sions with attention before finally passing this graph-enhanced
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IEMOCAP
SVM DNN CMN MDNN CNN-LSTM-DNN[19] BiGRU+Att ASRNN[20] CVAE-LSTM[8] GA-GRU

Happiness 44.32 52.2 27.78 - - 59.66 - - 53.73
Neutrality 52.87 58.61 68.16 - - 56.56 - - 58.9
Sadness 73.8 65.13 57.81 - - 67.34 - - 71.96
Anger 66.55 61.02 92.94 - - 66.18 - - 70.63
WA 56.88 58.47 65.3 61.8 - 61.51 - - 62.27
UA 59.38 59.24 61.7 62.7 60.23 62.44 62.6 62.8 63.8

Table 1: The table shows the unweighted average recall (UA), weighted accuracy (WA) and each emotion class’s recall rate obtained
from the baseline model and our proposed model in the IEMOCAP.

attentive embeddings through the recognition layer,

Hl =
∑
t

Glhl
tα

l
t (6)

where Hl is the final embedding of lth sentence after graph-
based attention mechanism, and t is the sequence length of each
sentence. After obtaining the final embedding in the graph at-
tentive BiGRU, this embedding is fed into common dense layer
followed by a softmax layer,

Y l = Softmax(Linear(Hl)) (7)

where Y l is the predicted emotion of the lth utterance.

3. Experimental Setup and Results
3.1. Experimental Setup

The detail settings of our model are as below: there are two
layers of BiGRU and each is with 256 hidden dimension, 0.1
dropout rate, and the final emotion recognition layer is one lin-
ear layer. The hidden dimension of attention layer is set to 16,
epsilon of graph is 1e − 15. Learning rate of both databases
is 2e − 4, batch size of these two corpora are both 64 as well.
Adam optimizer, crossentropy loss criterion and early stopping
are applied on both databases. Due to a more extreme label im-
balance condition for the MSP-IMPROV, we further upsample
the sadness and anger class by random duplication to balance
the overall four class distribution. Finally, to be consistent in
comparing with past works, we perform leave-one-person-out
cross validation and report unweighted average recall (UAR)
and accuracy (WA) as our metric.

3.2. Comparison Models

The following recent per-utterance speech modeling methods
for emotion recognition that are used to compare the perfor-
mance with our proposed model. Only the CMN network is
re-implemented by the release source code and other models’
results are referring to reference paper.

• Support Vector Machine (SVM): We extract the 88
dimensional eGemaps functional features per utterance
and use support vector machine (SVM) with linear ker-
nel (C equals to 1 and class weight parameters is set as
balanced).

• Deep Neural Network (DNN): We build 3 dense layers
with ReLU activation function (input features are also
eGemaps). Early stopping scheme is also utilized.

• CMN: This architecture was proposed by Hazarika in
2018, the memory cell was used to retain the conver-
sational context information to help improve emotion
recognition [6].

• MDNN: This architecture was proposed by Zhou in
AAAI 2018, which was a deep neural network that com-
prise of multiple local classifiers and aggregation of all
the local information to a global emotion classifier [7].

• CNN-LSTM-DNN: This structure applies convolutional
neural network (CNN) to extract features from the
speech signal, followed by a LSTM layer which cap-
tures the temporal information and aggregates them us-
ing a fully connected layer in the final recognition. This
method considers the local saliency through CNN and
also the global information from LSTM. The model was
proposed and applied successfully on categorical emo-
tion recognition in 2019 [19].

• ASRNN: This model was proposed in 2020 that com-
bines the 3D convolution in the front-end structure which
integrates the information from temporal and spectral
to improve the recognition accuracy. A bidirectional
LSTM and attention mechanism is applied that helps in
strengthening the time step importance through the use
of attention weight and then finally predict with a dense
layer [20].

• CVAE-LSTM: Siddique proposed a conditional VAE in
2017 [8] by using the emotion category as a condition
placed on each frame, and this condition enforces the
VAE to generate a more emotionally-consistent repre-
sentation. The performance surpasses conventional VAE
and attentive-CNN model.

• BiGRU+ATT: This is a BiGRU with attention but with-
out our proposed graph structure. The input feature is 78
dimensions of Emobase, and all other settings are iden-
tical to our use of BiGRU with attention.

3.3. Results and Analysis

3.3.1. Performance Comparison

Table 1 and Table 2 summarize all of the recognition results
in two databases. We see that overall our proposed GA-GRU
model performs the best, i.e., 63.8 and 57.47, in the IEMO-
CAP and the MSP-IMPROV database, respectively. We ob-
serve that the performance of our GA-GRU is 1.1 better than
the model of BiGRU with attention, MDNN, ASRNN and even
CAVE-LSTM, and 4.42 higher than others in the IEMOCAP
database. The improvement is much more substantial in the
MSP-IMPROV database; the UAR of our GA-GRU is 5.03
higher than CNN-LSTM-DNN and BiGRU with attention, 1.77
higher than ASRNN, and it surpasses the original baseline paper
of the MSP-IMPROV by 16.07 [16].

We additionally observe that by including graph structure to
enhance the original self attention mechanism, the improvement
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MSP-IMPROV
Baseline[16] SVM DNN CNN-LSTM-DNN[19] BiGRU+Att ASRNN[20] GA-GRU

Happiness - 47.09 38.58 - 54.43 - 52.43
Neutrality - 45.1 46.07 - 54.5 - 59.83
Sadness - 61.13 61.13 - 47.68 - 52.54
Anger - 57.95 62.37 - 52.4 - 65.15
WA - 48.9 46.9 - 53.49 - 56.21
UA 41.4 52.82 52.04 52.43 52.25 55.7 57.47

Table 2: The table shows the unweighted average recall (UA), weighted accuracy (WA) and each emotion class’s recall rate obtained
from the baseline models and our proposed model in the MSP-IMPRO.

(a) The IEMOCAP (b) The MSP-IMPROV

Figure 2: Edge connection between three different time parti-
tions of an utterance for the IEMOCAP and the MSP-IMPROV.
F represents the beginning 1/3 part, M is mid part, and B is last
1/3. FF means connection within F partition, and FB means
connection occurs between F and B and so on.

in the recognition rates come from similar emotion classes in
both the IEMOCAP and the MSP-IMPROV database. Specif-
ically, it improves 4.62, 4.45 for sadness and anger and 2.34
for neutrality for the IEMOCAP. For the MSP-IMPROV, sad-
ness improves 4.86, and anger improves 12.75 and even 5.33
increase in neutrality by integrating such a graph structure in
modulating the attention weights.

3.3.2. Attention and Graph Analysis

We provide an analysis on the learned graph-based attention
weights. We first split each utterance into three equal partitions
in time, i.e., front (F), middle (M), and back (B). We examine
our within-utterance graph’s edge weights specifically on those
that are in the top 50-th percentile. We plot the ratio of those
top 50-th percentile edges that result in a linked connection be-
tween the three partitions (FF, MM, BB, FM, FB, MB) for each
of the four emotion classes (Figure 2). It is nature to see that the
highest peaks exists within individual partition (FF, MM, BB),
i.e., the local contextual information is inevitably the most im-
portant and similarly related to emotion. However, we observe a
phenomenon that furthest cross segments (FB connections) tend
to occur mostly in sadness and least likely in happiness. This
effect is consistent over the two databases.

We can further analyze this phenomenon by plotting the
original attention distribution versus graph modulated attention
profile over an utterance in Figure 3 (in order to better visual-
ize the effect, the profile is derived by summing those attention
weights that are in the 70-th percentile only). Figure 3 shows a
general trend across the four emotions in two databases that the
beginning and and ending portion of the attention weights be-
come larger after applying graphs. One interesting thing that we
observe is that for the class of sadness across the two different
databases, not only the values but even the shape of attention

Figure 3: Attention analysis of experiments: blue/yellow line is
the IEMOCAP and the MSP-IMPROV, the solid/dash line indi-
cates original/graph based attention weights respectively.

distribution are different before and after the graph modulation.
In summary, by applying graph based attention mechanism on
times series GRU models, our proposed method is able to re-
distribute (re-emphasize) those acoustic segments that are are
emotionally-salient beyond left-to-right and/or vice versa over
the course of an utterance to improve the overall performances.

4. Conclusion

In this work, we propose a graph based attention mechanism
that is jointly trained with bidirectional GRUs to enhance the
modeling capacity of time series model for SER. We observe
an improvement in SER accuracy by imposing a graph struc-
ture for attention GRU in both the IEMOCAP and the MSP-
IMPROV. When comparing to the existing state-of-art using the
exact same experimental setting, our method outperforms all of
them. Our analyses demonstrate that by joining a graph struc-
ture with attention mechanism, it would effectively re-distribute
the attention weighs in handling the complex nature of acoustic
encoding of emotion in speech - resulting in an improved recog-
nition accuracy. One of our immediate future work is to inte-
grate lexical information where graph structure would provide a
better structure and flexibility in handling the intertwining effect
of lexical and acoustic modality in carrying emotion informa-
tion in speech. Furthermore, we would also explore other node-
edge construction mechanism by inclusion of meta attributes,
such as personality, to derive a multi-view graph in advancing
the learning for SER applications and bring additional insights
on the saliency profile of speech emotion expressions.
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