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Abstract
Emotion recognition remains a complex task due to speaker
variations and low-resource training samples. To address these
difficulties, we focus on the domain adversarial neural networks
(DANN) for emotion recognition. The primary task is to predict
emotion labels. The secondary task is to learn a common rep-
resentation where speaker identities can not be distinguished.
By using this approach, we bring the representations of differ-
ent speakers closer. Meanwhile, through using the unlabeled
data in the training process, we alleviate the impact of low-
resource training samples. In the meantime, prior work found
that contextual information and multimodal features are impor-
tant for emotion recognition. However, previous DANN based
approaches ignore these information, thus limiting their perfor-
mance. In this paper, we propose the context-dependent domain
adversarial neural network for multimodal emotion recognition.
To verify the effectiveness of our proposed method, we conduct
experiments on the benchmark dataset IEMOCAP. Experimen-
tal results demonstrate that the proposed method shows an ab-
solute improvement of 3.48% over state-of-the-art strategies.
Index Terms: emotion recognition, domain adversarial learn-
ing, speaker-independent representations, contextual informa-
tion, multimodal features

1. Introduction
Emotion recognition is an important research topic for interac-
tive intelligence systems with broad applications in many tasks,
such as customer service [1, 2], social media analysis [3, 4, 5]
and education [6, 7]. The task of emotion recognition requires
understanding the way that humans express their emotions, and
classifies each utterance into one of a fixed set of categories.

Despite its importance, emotion recognition remains a com-
plex task due to the following challenges: (1) Since existing
datasets are relatively small-scale [8, 9], the first challenge is
how to learn a good representation that captures the emotion
signals with limited training samples; (2) Since emotion recog-
nition systems are greatly affected by speaker variations [10],
the second challenge is how to learn robust emotion represen-
tations across different speakers; (3) Since multimodal features
and context information are vitally important for emotion recog-
nition [11, 12], the third challenge is how to effectively utilize
these information in emotion recognition.

The key challenge in emotion recognition is how to learn
good emotion representations with limited training data. The
publicly available datasets [8, 9] have relatively small number
of total utterances. To deal with this problem, previous works

[13, 14] used unsupervised learning to convert original features
into more compressed representations, thus capturing intrinsic
structures of the data. One common method is to train autoen-
coder [13] and its variations (such as adversarial autoencoders
(AAEs) [14] and variational autoencoders (VAEs) [15]). How-
ever, it is unclear whether these compressed representations pre-
serve emotion components. In fact, prior work found that emo-
tion components could be lost after feature compression [16].

Another key challenge is how to learn robust representa-
tions that remain invariant under different speakers. Previous
works focused on data split strategies, thus ensuring no speaker
overlap in the training set and the testing set [11, 17]. For exam-
ple, the IEMOCAP dataset [9] contains five sessions and each
session has different actors. Hazarika et al. [17] utilized ut-
terances from the first four sessions for training and others for
testing. However, it is unclear whether these methods can actu-
ally learn speaker-independent representations.

To address above difficulties, domain adversarial neural
network (DANN) based methods [18, 19] have been proposed
recently, and achieved promising results for emotion recog-
nition. These methods contain three key modules: the fea-
ture encoder, the emotion category classifier and the speaker
identity classifier. Firstly, a gradient reversal layer [20] is
inserted between the feature encoder and the speaker classi-
fier. Through optimizing speaker and emotion classifiers, these
methods [18, 19] are able to learn representations that pre-
serve emotion components and remain invariant under different
speakers. Secondly, these methods [18, 19] can utilize the unla-
beled data in the training process, thus alleviating the impact of
limited training samples.

The third challenge is how to effectively use multimodal
features and context information in emotion recognition [11,
12]. Firstly, human perceive emotions not only through the cur-
rent utterance, but also from the contextual information in its
surroundings [21]. Secondly, due to the complexity of emotion
recognition, the single modality is difficult to meet the demand,
and multimodal features should be considered. However, previ-
ous DANN based approaches [18, 19] ignore these information,
thus limiting their performance in emotion recognition.

In this paper, we propose the context-dependent DANN
for multimodal emotion recognition. Different from previous
works for low-resource problems [13, 14] , our method is able to
learn representations that preserve emotion components and re-
main invariant under different speakers, thus improving recog-
nition performance in low-resource conditions. Different from
previous DANN approaches [18, 19], our method utilizes mul-
timodal features and context information for emotion recogni-
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Figure 1: Overall structure of the proposed framework.

tion. The main contributions of this paper lie in three aspects:
1) We propose a novel DANN based framework for emotion
recognition; (2) We observe that our method achieves promis-
ing performance with limited training data; (3) Experimental
results on the popular benchmark datasets IEMOCAP demon-
strate the effectiveness of our method. Our method shows an
absolute improvement of 3.48% over state-of-the-art strategies.

The remainder of this paper is organized as follows: In Sec-
tion 2, we formalize the problem statement and describe our
proposed method in detail. The experimental datasets, setup,
results and analysis are illustrated in Section 3. Finally, we give
a conclusion of the proposed work in Section 4.

2. Proposed Method
In this paper, we propose a DANN based framework for emo-
tion recognition. As shown in Figure 1, the proposed frame-
work consists of three modules: (1) The feature encoder ex-
tracts context-dependent multimodal representations for each
utterance; (2) The domain classifier learns to extract speaker-
independent representations; (3) The emotion classifier ensures
emotion components is preserved in these representations.

2.1. Problem Definition

A dialogue U = {(u1, e1, s1), (u2, e2, s2), ..., (uL, eL, sL)}
contains L pairs of (ui, ei, si) ∈ (U , E ,S). Here, ui is the ith

utterance in the dialogue, which is produced by the speaker si
with the emotion ei. U , E ,S are the sets of whole utterances,
emotion labels and all speakers, respectively.

Let there be M emotion-labeled dialogues, and each dia-
logue j contains Lj pairs of (ui, ei, si) ∈ (U , E ,S). Let there
beN unlabeled dialogues and each dialogue j containsLj pairs
of (ui, si) ∈ (U ,S). Like previous experimental settings [17],
speaker identities are always available. The task is to predict the
emotion label for each utterance in these unlabeled dialogues.

2.2. Context-dependent Multimodal Feature Encoder

The feature encoder contains two key components: the Audio-
Text Fusion component (AT-Fusion) for multi-modalities fusion
and the Self-Attention based Gated Recurrent Unit (SA-GRU)
for contextual feature extraction.

Multi-modalities Fusion (AT-Fusion): Different modali-
ties have different contributions in emotion recognition. To ag-
gregate the salient information over each modality, we utilize
the attention mechanism for multi-modalities fusion. Specifi-
cally, we first extract acoustic features ai ∈ Rda×1 and lexi-
cal features ti ∈ Rdt×1 from each utterance ui. Here, da and
dt represent feature dimensions of acoustic features and lexi-
cal features, respectively. Then we equalize the dimensions of
these features to size d using two fully-connected layers. AT-
Fusion takes these features as inputs, and outputs the attention
vector αfuse ∈ R1×2 over two modalities. Finally, the fusion
representation fi ∈ Rd×1 is generated as follows:

ucat
i = Concat(Waai,Wtti) (1)

αfuse = softmax(wT
F tanh(WFu

cat
i )) (2)

fi = ucat
i αT

fuse (3)

where wa ∈ Rd×da , wt ∈ Rd×dt , WF ∈ Rd×d and wF ∈
Rd×1 are trainable parameters. Here, ucat

i ∈ Rd×2.
This multimodal representation is generated for utterances

in the conversation U , marked as F = [f1, f2, ..., fi, ..., fL].
Contextual Feature Extraction (SA-GRU): SA-GRU

uses the bi-directional GRU (bi-GRU), in combination with the
self-attention mechanism [22] to amplify the important contex-
tual evidents for emotion recognition. Specifically, multimodal
representations F are given as inputs to the bi-GRU. Outputs of
this layer form H = [h1, h2, ..., hi, ..., hL], where H ∈ RL×d.
Then H is fed into the self-attention network. It consists of a
multi-head attention to extract the cross-position information.
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Each head headi ∈ RL×(d/h), i ∈ [1, h] (h is the number of
heads) is generated using the inner product as follows:

headi = softmax((HWQ
i )(HWK

i )T )((HWV
i ) (4)

where WQ
i ∈ Rd×(d/h), WK

i ∈ Rd×(d/h) and WV
i ∈

Rd×(d/h) are trainable parameters.
Then outputs of each headi ∈ RL×(d/h), i ∈ [1, h] are

concatenated together as final values R ∈ RL×d. As contextual
representationsR is generated for all utterances in the conversa-
tion U , it can also be represented as R = [r1, r2, ..., ri, ..., rL],
where ri ∈ Rd, i ∈ [1, L].

2.3. Domain Adversarial Neural Networks

DANN has two classifiers – the emotion classifier and the do-
main classifier. Both classifiers share the feature encoder (in
Session 2.2) that determines the representations of the data used
for classification. This approach introduces a gradient rever-
sal layer [20] between the domain classifier and the feature en-
coder. This layer passes the data during forward propagation
and inverts the sign of the gradient during backward propaga-
tion. Therefore, DANN attempts to minimize the emotion clas-
sification error and maximize the domain classification error.
By considering these two goals, the model ensures a discrimi-
native representation for the emotion recognition, while making
the samples from different speakers indistinguishable.

Let there be M emotion-labeled dialogues, and each dia-
logue i contains Li utterance. Define uj is the jth utterance
in the dialogue i, which is uttered by the speaker sj with the
emotion ej . After feature encoder (in Session 2.2), rj is the
context-dependent multimodal feature for uj . We train the emo-
tion recognition task with emotion-labeled dialogues (in Ses-
sion 2.1). The performance of emotion classifier is optimized
by minimizing the cross entropy loss Ly:

Ly =

M∑
i=1

Li∑
j=1

−logP (ej |rj) (5)

In addition, we train the domain classifier with M labeled
and N unlabeled dialogues (in Session 2.1). The performance
of domain classifier is optimized by minimizing the cross en-
tropy loss Ld:

Ld =

M+N∑
i=1

Li∑
j=1

−logP (sj |rj) (6)

To combine these two objective functions together, we flip
the sign of Ld to do a gradient reversal and minimize the
weighted overall loss sums. The final objective loss function
is written as:

L = Ly − λLd (7)

where λ ∈ [0, 1] is a hyper-parameter that controls the trade off
between two losses.

3. Experiments and Discussion
3.1. Corpus Description

We perform experiments on the IEMOCAP dataset [9], a bench-
mark dataset for emotion recognition. It contains audio-visual
conversations spanning 12.46 hours of various dialogue scenar-
ios. There are five sessions and two distinct professional ac-
tors are grouped in a single session. All the conversations are

Table 1: The data distribution of the IEMOCAP dataset.

Session 1 2 3 4 5
No.utterance 1085 1023 1151 1031 1241
No.dialogue 28 30 32 30 31

split into small utterances, which are annotated using the fol-
lowing categories: anger, happiness, sadness, neutral, excite-
ment, frustration, fear, surprise and other. To compare our
method with state-of-the-art methods [11, 17], we consider the
first four categories, where happiness and excitement categories
are merged into the single happiness category. Thus 5531 ut-
terances are involved (happiness: 1636, neutral: 1084, anger:
1103, sadness: 1708). The number of utterances and dialogues
of each session are listed in Table 1.

3.2. Data Representation

Acoustic features: We extract utterance-level acoustic features
using the openSMILE [23] toolkit. Specifically, we utilize the
Computational Paralinguistic Challenge (ComParE) feature-set
introduced by Schuller et al. [24]. Totally, 6373-dimensional
features are extracted, including energy, spectral, MFCCs, and
their statistics (such as mean, root quadratic mean).

Lexical features: We use word embeddings to represent
the lexical information. Specifically, we employ deep contextu-
alized word representations using the language model ELMo
[25]. These word vectors are trained on the 1 Billion Word
Benchmark [26]. Compared with traditional word vectors [27],
these representations have proven to capture syntax and seman-
tics aspects as well as the diversity of the linguistic context of
words. To extract utterance-level lexical features, we calculate
mean values of word representations in the utterance. Finally,
1024-dimensional utterance-level lexical features are extracted.

3.3. Experimental Setup

As for the feature encoder (in Figure 1), AT-Fusion contains
two fully-connected layer, mapping acoustic and lexical fea-
tures into size d = 100. SA-GRU contains a bi-GRU layer
(50 units for each GRU component) and a self-attention layer
(100 dimensional states and 4 attention heads). To optimize
the parameters, we use the Adam optimization, starting with
an initial learning rate of 0.0001. We train our models for 100
epochs with a batch size of 20. Dropout [28] with p = 0.2
and L2 regularization with weight 0.00001 are also utilized to
alleviate over-fitting problems. In our experiments, each config-
uration is tested 20 times with varied weight initializations. To
compare our method with other advanced approaches [29, 30],
weighted accuracy (WA) is chosen as our evaluation criterion.
WA is a weighted mean accuracy over different emotion classes
with weights proportional to the number of utterances in a par-
ticular emotion class.

3.4. Classification Performance of the Proposed Method

Two systems are evaluated in the experiments. In additional to
the proposed system, one comparison systems are also imple-
mented to verify the effectiveness of our proposed method:

(1) Our system (Our): It is our proposed method. For the
emotion classifier, we train the classifier with the labeled data.
For the domain classifier, we train the classifier with both the
labeled and unlabeled data. Specifically, we find that we can
gain the best performance by setting λ in Eq. (7) to be 1.
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Table 2: Experimental results of WA(%) for two systems under
different training settings.

TS 1234 TS 123 TS 134 TS 234 TS 23
Cmp 81.06 80.82 79.85 78.89 77.60
Our 81.14 82.68 82.27 82.43 81.39
∆ +0.08 +1.86 +2.42 +3.54 +3.79

(2) Comparison system (Cmp): It comes from Our, but ig-
noring the domain classifier. Specifically, we only optimize the
emotion classifier by setting λ in Eq. (7) to be 0.

Furthermore, to explore the impact of the amounts of la-
beled samples in the training set, five training settings are
discussed, including TS 1234, TS 123, TS 134, TS 234 and
TS 23. These training settings follow the same naming way.
For example, TS 123 represents that the training data contains
the labeled data from Session 1∼3, and the unlabeled data from
Session 4∼5. TS 1234 represents that the training data contains
the labeled data from Session 1∼4, and the unlabeled data from
Session 5. As Session 5 is always unlabeled under these train-
ing settings, we evaluate the emotion recognition performance
on Session 5. Experimental results of WA are listed in Table 2.

To verify the effectiveness of our proposed method, we
compare the performance of Our and Cmp. Experimental re-
sults in Table 2 demonstrate that our proposed method is supe-
rior to Cmp in all cases. Compared with Cmp, our proposed
method can learn speaker-independent representations. It en-
sures our model to focus on emotion-related information, while
ignoring the difference between speaker identities. Therefore,
our method increases generalization to unseen speakers, thus
improving performance of emotion recognition.

To show the impact of the amount of training samples, we
compare the performance under different training settings. Ex-
perimental results in Table 2 demonstrate that when we reduce
training samples, Cmp has 0.2%∼3.5% performance decre-
ment. Without enough training samples, Cmp faces the risk
of over-fitting, thus leading to performance decrement on the
unlabeled data. Interestingly, we notice that our method gains
0.2%∼1.5% performance improvement when we reduce train-
ing samples. Meanwhile, we compare the performance of Our
and Cmp under different training settings. We observe that the
margin of improvement increases with small amounts of train-
ing data. These phenomenons reveal that our method can utilize
unlabeled samples properly. Therefore, our method achieves
better performance than Cmp in low-resource conditions.

3.5. Comparison to State-of-the-art Approaches

To verify the effectiveness of the proposed method, we further
compare our method with other currently advanced approaches.
Experimental results of different methods are listed in Table 3.

Compared with our proposed method, these approaches
[18, 19] also utilize DANN for emotion recognition. However,
these methods ignore the contextual information and multi-
modal information in the training process. Experimental results
in Table 3 demonstrate that our method is superior to [18, 19]
with a large margin. This serves as strong evidence that con-
sidering contextual information and multimodal information in
DANN can improve the performance of emotion recognition.

Compared with our proposed method, these approaches
[11, 17, 29, 30, 31, 32] also utilized acoustic features and lex-
ical features for emotion recognition. Context-free systems
[29, 30, 31, 32] inferred emotions based only on the current

Table 3: The performance of state-of-the-art approaches and
the proposed approach on the IEMOCAP database.

Approaches WA (%)
Abdelwahab et al. (2018) [19] 56.68
Li et al. (2019) [18] 58.62
Rozgić et al. (2012) [29] 67.40
Jin et al. (2015) [30] 69.20
Poria et al. (2017) [11] 74.31
Li et al. (2018) [31] 74.80
Hazarika et al. (2018) [17] 77.62
Li et al. (2019) [32] 79.20
Proposed method 82.68

utterance in conversations. While context-based networks [11]
utilized the LSTMs to capture contextual information from their
surroundings. However, context-based networks [11] suffered
from incapability of capturing inter-speaker dependencies. To
model the inter-speaker dependencies, Hazarika et al. [17] used
memory networks to perform speaker-specific modeling. How-
ever, the inter-speaker influence was hard to evaluated. To avoid
this problem, the proposed method learns speaker-independent
representations via DANN, attempting to reduce the impact of
inter-speaker influence. Experimental results in Table 3 demon-
strate the effectiveness of the proposed method. Our proposed
method shows an absolute improvement of 3.48% over state-
of-the-art strategies. This serves as strong evidence that our
context-dependent domain adversarial neural network can yield
a promising performance for multimodal emotion recognition.

4. Conclusions
In this paper, we propose a context-dependent domain adver-
sarial neural network for multimodal emotion recognition. To
evaluate the effectiveness of our proposed method, we conduct
experiments on the IEMOCAP database. Experimental results
demonstrate that our method enables the model to focus on
emotion-related information and ignore the difference between
speaker identities. This is why we achieve better performance
on unseen speakers compared with the fully supervised learn-
ing strategy. In the meantime, our method can utilize unlabeled
samples properly, and achieve promising results in low-resource
conditions. Furthermore, we prove that considering contextual
information and multimodal information in DANN can improve
the performance of emotion recognition. Due to above advan-
tages, this novel framework is superior to state-of-the-art strate-
gies for emotion recognition.

Future investigations include a detailed analysis of the
amounts of unlabeled samples for DANN. Besides unlabeled
samples in IEMOCAP, unlabeled samples from other corpora
(e.g., SEMAINE) should also be evaluated. Additionally, be-
sides acoustic and lexical modalities, we aim to further improve
the classification accuracy using the visual information.
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