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Abstract

While having numerous real-world applications, speech emo-
tion recognition is still a technically challenging problem.
How to effectively leverage the inherent multiple modalities in
speech data (e.g., audio and text) is key to accurate classifica-
tion. Existing studies normally choose to fuse multimodal fea-
tures at the utterance level and largely neglect the dynamic in-
terplay of features from different modalities at a fine-granular
level over time. In this paper, we explicitly model dynamic
interactions between audio and text at the word level via in-
teraction units between two long short-term memory networks
representing audio and text. We also devise a hierarchical rep-
resentation of audio information from the frame, phoneme and
word levels, which largely improves the expressiveness of re-
sulting audio features. We finally propose WISE, a novel word-
level interaction-based multimodal fusion framework for speech
emotion recognition, to accommodate the aforementioned com-
ponents. We evaluate WISE on the public benchmark IEMO-
CAP corpus and demonstrate that it outperforms state-of-the-art
methods.

Index Terms: Speech emotion recognition, dynamic interac-
tion mechanism, hierarchical representation, deep multimodal
fusion

1. Introduction

In recent years, speech emotion recognition (SER) has found
its way in a wide range of human-computer interaction applica-
tions. For example, chatbots have become increasingly popular
in various customer services over the phone or the Web. Ac-
curately detecting users’ emotions via their utterances is key to
better user experience in such scenarios. As another example,
SER has been used to help children with autism who may expe-
rience significant difficulties to recognize and express emotions
to improve their socio-emotional communication skills [1]. Due
to its practical importance, SER has received substantial atten-
tion from both academia and industry. However, as of now, it
still remains a challenging technical problem due to the inherent
subtlety of human emotions.

Speech by its nature is multimodal. While there are a large
number of studies that consider only a single modality for SER,
the latest research results [2, 3, 4, 5, 6, 7, 8, 9, 10] have con-
firmed the necessity and benefits of leveraging multimodal fea-
tures. Audio and text are arguably the two modalities most com-
monly used together for SER. The existing studies normally
fuse audio and text features at the utterance level and largely
neglect the dynamic interplay of features from different modal-
ities along the timeline. We argue that such interplay at a fine-
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granular level and its evolution are critical to discriminate hu-
man emotions.

In this paper, we propose to capture the interplay between
audio and text at the word level as a word is the most natural
textual unit in a sentence with meaningful semantics. To enable
the interaction between audio and text, we align a word with
its corresponding audio clip along the timeline. We explicitly
model the interaction between the aligned word and audio clip
and leverage their evolution over time, which intuitively unveils
human emotions better. While word embeddings are effective to
generate word-level textual features, word-level audio features
need a more careful design. Existing research typically gener-
ates audio features at the frame level. However, our insight is
that frame-level audio features tend to introduce emotionally ir-
relevant noise, leading to worse performance. To this end, we
devise a hierarchical representation structure to extract a word-
level audio clip’s features from its contained phonemes, whose
features are further extracted from their contained frames. Fi-
nally, we present WISE, a novel word-level interaction-based
multimodal fusion framework for speech emotion recognition,
which makes use of an attention mechanism to generate a tem-
porally weighted aggregation of word-level fused multimodal
features. We summarize our technical contributions as follows.

* We propose a novel interaction mechanism to capture
the dynamic interactions and evolution between multi-
modal features at the word level. To the best of our
knowledge, this is the first work that considers word-
level interaction-based multimodal fusion for SER.

* We design a hierarchical representation of audio at the
word, phoneme and frame levels, which forms more
emotionally relevant word-level acoustic features.

* We put forward an original deep multimodal fusion
framework to accommodate the above components, lead-
ing to more accurate SER. We demonstrate that WISE
substantially outperforms the best state-of-the-art meth-
ods on the benchmark IEMOCAP dataset'.

2. Related Work

The recent rise of deep learning techniques has been the fuel
for SER. There has been a good amount of research [11, 12, 13,
14, 15, 16, 17, 18, 19, 20] using unimodal features to classify
speech emotions. Due to the space limit, we focus on reviewing
the latest research that considers multimodal features for SER,
which has shown improved performance. Yoon et al. [2] pro-
pose a deep dual recurrent encoder model that represents both

'Our code is available at https://github.com/gshen-
heu/WISE
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Figure 1: The architecture of the WISE framework. The left part illustrates the hierarchical representation of word-level audio features;
the right part illustrates the word-level multimodal interaction mechanism and the deep fusion network.

audio and text data as sequences and combines them to rec-
ognize emotions from speech. Cho et al. [3] propose to use
a long short-term memory (LSTM) network to detect emotions
from acoustic features and a multi-resolution convolutional neu-
ral network (CNN) to detect emotions from word sequences.
Liu et al. [4] put forward a low-rank multimodal fusion method
that performs multimodal fusion using low-rank tensors to im-
prove efficiency. Ghosal et al. [5] hypothesize that neighboring
utterances of an utterance can contribute to emotion recognition
and devise a recurrent neural network based multimodal atten-
tion framework. Kim and Shin [6] use deep neural networks
to extract bottleneck acoustic features and extract two types of
word-level lexical features in the forms of the distributed rep-
resentation and affective lexicon-based dimensions. Sebastian
and Pierucci [7] experiment with various existing fusion strate-
gies over DNN-based unimodal emotion detection systems for
audio and text. With a different objective, Lian et al. [8] study
the problem of conversational emotion analysis. The key idea
is to exploit dependencies among different utterances in a con-
versational dialog. Similarly, Gu ef al. [9] consider emotion
recognition in dyadic communication rather than a single utter-
ance. They design a dyadic fusion network that only relies on
an attention mechanism to fuse modality-specific features.

All previous studies consider the fusion between audio and
text features at the utterance level, which is insufficient to cap-
ture the emotion development process for better classification
performance. Xu et al. [10] propose to learn the soft alignment
between words and acoustic frames. An attention network is
used to generate an aligned weighted audio feature vector from
all frames for each word. While this method promotes interac-
tions between text and audio at a fine-granular level, aligning
words with all audio frames in an utterance could be less ef-
fective as previous research [21] has indicated that emotional
information is best expressed by consecutive frames rather than
scattered frames.

3. The WISE Framework

Given an utterance, the proposed WISE framework aligns text
and audio data at the word level, creates word-level audio and
text features, fuses them dynamically along the timeline, and fi-
nally uses an attention mechanism to learn temporally weighted
features for emotion classification. The text information in an
utterance can be obtained via an automatic speech recognition
(ASR) system [22] in real time. The overall architecture of the
WISE framework is illustrated in Figure 1.
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3.1. Word-Level Multimodal Alignment and Interaction

To achieve multimodal emotion recognition using audio and
text, previous studies normally train LSTMs to model audio
and text data independently and only concatenate them before
feeding into fully connected layers. Such methods cannot learn
the temporal correlation among multiple modalities at a fine-
granular level, which is vital for more accurate SER. To address
this limitation, we propose a novel interaction mechanism that
allows to dynamically fuse audio and text features at the word
level and that better models the evolution of the emotion em-
bedded in an utterance.

The first step is to create word-level features from audio
and text. Extracting words from a sentence is straightforward.
Once we have the words in an utterance, we can generate the
corresponding audio clip for each word by excerpting the au-
dio chunk between the starting and ending timestamps of the
word. We convert each word into a 300-dimensional embed-
ding vector ¢; by using pre-trained GloVe vectors [23]. Then
the textual word sequence in an utterance (referred to as fext se-
quence) can be represented as [t1, 2, ,tn], where N is the
number of words in the sentence. Similarly, we can represent
the sequence of word-level audio clips (referred to as audio se-
quence) as [a1, a2, -+ ,an], where a; is the feature vector of
the ¢-th audio clip. We discuss how to generate a; by using a
hierarchical representation in Section 3.2.

Before introducing the interaction mechanism, we can use
LSTM:s to model the text and audio sequences at the word level.
The hidden state h;, of the ¢-th word in the text LSTM is:

hti :f@t(tivhti71)7 (D

where fo, is the LSTM function with parameter 6;, he,_, is
the hidden state of the previous word, and ¢; is the GloVe word
embedding of the i-th word. Similarly, the hidden state hq, of
the ¢-th audio clip in the audio LSTM is:

hai = f9a (aiv hai—l)a (2)

where fp, is the LSTM function with parameter 6,, ha,_, is
the hidden state of the previous audio clip, and a; is the feature
vector of the i-th audio clip.

In order to capture the word-level interaction between the
(i—1)-th text and audio pair, we introduce an interaction matrix
to fuse hq;_, and h¢,_,, and the fused results are passed into
the ¢-th text and audio LSTM cells as input. In this way, we
enable the interactions between text and audio at the word level



and are able to model the evolution of emotions over time. More
specifically, given the hidden states h,, , and h;, , at time step
i — 1, the hidden states at time step ¢ are calculated as follows:

]:_Lai,—l — Waa Wta haj_l (3)
htl_l Wat th h’ti—l
ha; = fou (tisha;_y) 4
he, = fo, (@i, he,_,) )

Here Wqa, Wia, Wae and Wy are trainable parameters, which
together define the interaction matrix. They are initialized from
a normal distribution with zero mean and a standard deviation
of 0.05 for stable learning. The learned interaction matrix maps
ha,_, and hy, , into hq,; , and hy, ,, respectively, and hq;_,
and Bti*l are fed into the next LSTM cells as input. Intuitively,
the interaction matrix can map the audio features into the text
feature space by the weight matrix W,; and map the text fea-
tures into the audio feature space by the weight matrix We,.
The weight matrices W,, and W5, represent the weights that
the LSTM networks should retain and pass to the next time
step. So the input of an LSTM cell at the ¢-th time step con-
sists of two parts: the information from the same modality that
is retained from the previous time step and the fused informa-
tion learned from the multimodal interaction. The interaction
matrix is shared by all LSTM cells.

3.2. Hierarchical Representation of Audio Data

Modern linguistics indicates that speech sound can be repre-
sented at multiple levels: the sound of a word consists of several
phonemes, and a phoneme can be further divided into frames,
where a phoneme is the smallest unit of sound that may cause
a change of meaning within a human language [24]. This im-
plies a natural hierarchical representation of audio data. Prior
studies only focus on frame-level representations of audio data.
However, frame-level information is normally noisy for emo-
tion recognition. For example, there are many frames that are
simply silent or contain only background noise. Therefore, we
propose a hierarchical representation structure of audio data, as
illustrated in the left part of Figure 1, which can effectively
eliminate noise from low-level acoustic information by lever-
aging high-level semantic meaning.

We first describe how to generate frame-level audio fea-
tures. We divide audio signals into frames of 25ms window
with 40% overlap. For a given frame, we use the openSMILE
toolkit [25] to extract its Mel-Frequency Cepstral Coefficients
(MFCCs), including 13 cepstral coefficients, 13 delta coeffi-
cients (i.e., first derivatives) and 13 acceleration coefficients
(i.e., second derivatives), which form a 39-dimensional frame-
level feature vector.

To construct the phoneme-level feature of the i-th phoneme
in a word, we represent the frame sequence in the phoneme as
[fi1, fiz, -+, fin,], where fi; is the feature of the j-th frame
in the ¢-th phoneme and NN; denotes the number of frames in the
phoneme. A gated recurrent unit (GRU) network [26] is used
to capture the contextual information between frames. It can be
represented as:

h’ij :GRU(f’LJ)vj € {1727 7Ni}7 (6)
where h;; is the contextual hidden state of the j-th frame. The
last hidden state of the GRU, h;x;, is considered as the repre-
sentative vector that contains all sequential audio information
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in the phoneme, and is used as the feature vector of the i-th
phoneme.

Similarly, the i-th word-level audio clip can be mod-
eled as a sequence of its contained phoneme feature vectors,
[hi1, hiz, - -+, hine], where h;; is the feature vector of the j-th
phoneme in the audio clip, and M is the number of phonemes in
the audio clip. We also apply a GRU to [h;1, hiz2, - - - , hsn] and
use the last hidden state as the word-level audio feature vector,
which is a; introduced in Section 3.1. In addition, GRUs used
for each level share the same parameters.

It is worth mentioning that we have experimented with var-
ious variants of the recurrent neural network (RNN) to generate
the hierarchical representation, such as LSTM, Bi-LSTM [27]
and Bi-GRU [28]. All of them achieve similar performance, but
GRU requires the least number of parameters and trains much
faster, which is the main reason to use it.

3.3. The Deep Multimodal Fusion Network

With the aforementioned word-level interaction mechanism and
hierarchical representation, we are ready to present the end-to-
end deep multimodal fusion framework, WISE. The core of our
framework is an attention layer that simultaneously learns the
weights of audio and text hidden states and the weights of dif-
ferent word-level audio and text pairs over time.

Given the sequences of audio and text hidden states
[harsPass -+ s hay] and [hyy, hey, -+ hey] learned from
Section 3.1, the normalized attention weight a; of the i-th pair
can be calculated as:

e; = tanh(waha; + wihi;) @

ejwe

e
Do ke ’

where e; is the energy score computed from hg; and h¢;, and
Wa, Wt, we are all trainable parameters. w. is the context vec-
tor, and w, and w; are the weights used to indicate the relative
strengths of hg, and hy, for emotion detection. Note that wg,
wt and w, are shared by all hidden states and are used to form
the joint representations from aligned word-level audio and text
features. The final emotion representation p. fed into the fully
connected layers is a weighted sum of all joint representations
at different time steps, which allows to selectively focus on the
most emotionally relevant audio and text pairs along the time-
line:

®)

ay =

Pe = Z ai(Waha; +wihe,) ©)

The fully connected layers contain three linear layers, the
first two of which are followed by a rectified linear unit (ReLU)
layer and a dropout layer. That is,

p1 =¢(wi T1pe) (10)
P2 =¢(ws r2p1) (11)
Uk :softmax(w;pg), (12)

where w1, w2, ws are trainable parameters with w; (i €
{1,2, 3}) being the weight of each linear layer, 71 and ry are
the dropout vectors, ¢(+) is the ReLU function, and gy, is the
output of the softmax function, which represents the final pre-
diction result. The cross-entropy loss for K -class classification
is used as the loss function:

K

L= ylog(gr)-

k=1

13)



4. Experimental Evaluation

In this section, we experimentally evaluate the performance of
our solution by comparing with state-of-the-art competitors.

4.1. Experimental Settings

We use the interactive emotional dyadic motion capture IEMO-
CAP) dataset [29] for experiments, which is a standard bench-
mark dataset widely used for SER. It has five sessions, involving
conversations from 10 female and male actors, along with the
corresponding labeled speech text (at both phoneme and word
levels). We use the ground-truth transcripts to generate word-
level textual features. For a fair comparison with previous stud-
ies [10, 24, 2], we also consider 4 out of the 9 emotions (angry,
happy, neutral and sad) for classification®. Each utterance in
the IEMOCAP dataset is labeled by three annotators, and we
assign a single category to each utterance by majority vote. The
final dataset contains 5,531 utterances in total, including 1,103
angry, 1,636 happy, 1,708 neutral, and 1,084 sad. Similar to the
setting in [2, 24], we perform 5-fold cross-validation to do the
evaluation. We compare our solution WISE with three state-of-
the-art multimodal methods that achieve the best performance
on IEMOCAP: LSTM+Attn [10], CNN+Phoneme [24] and
dual RNNs [2].

4.2. Implementation Details

We implement our model in PyTorch. We set the maximum
number of frames contained in a phoneme to 64 because more
than 90% of phonemes contain less than 64 frames, the maxi-
mum number of phonemes in a word to 14, and the maximum
number of words in an utterance to 128. We use 50 hidden units
(i.e., the dimension of a hidden state) in a GRU for phoneme-
level representations, 100 hidden units in a GRU for word-level
representations, 100 hidden units in the audio LSTM and 150
hidden units in the text LSTM. We set the output dimension
of the attention layer to 200 and the output dimensions of the
three linear layers to 200, 100 and 4, respectively. The WISE
model is optimized with the Adam optimizer [30]. We set the
learning rate to 0.001 and the decay rate of the learning rate to
0.001. To address overfitting, we use Lo regularization with the
regularization coefficient of 0.0001 and 30% dropout rate. The
PackedSequence library in PyTorch is used to deal with se-
quences with variable lengths.

4.3. Results and Discussion

We adopt two widely used evaluation metrics: weighted accu-
racy (WA) that is the overall classification accuracy and un-
weighted accuracy (UA) that is the average recall over the emo-
tion categories. We report the main results in Table 1. First, we
confirm that using multimodal features achieves better perfor-
mance than using unimodal features. Second, WISE achieves
the best WA and UA scores. It outperforms the best state-of-the-
art methods by absolute 2% WA increase and absolute 1.1% UA
increase. It is worth mentioning that CNN+Phoneme combines
the features from audio and spectrogram. The results suggest
that leveraging word-level interactions between audio and text
features is indeed beneficial for emotion recognition, validating
our hypothesis that audio and text together carry strong signals
for emotion classification.

To prove the benefits of different components we propose,
we perform an ablation study. Below we refer to the word-level

2 All utterances labeled excited are merged into the happy category.
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Table 1: Performance comparison between our solution and
state-of-the-art multimodal models on the IEMOCAP dataset

Methods WA UA

Audio only 0.665 0.657
Text only 0.692 0.701
LSTM+Attn [10] 0.725 0.709
CNN+Phoneme [24] 0.739 0.685
Dual RNNs [2] 0.737 0.753
WISE 0.759 0.764

Table 2: Performance of different variants of the WISE model

Methods WA UA

IM+DMF 0.729 0.742
HR+DMF 0.734 0.741
IM+HR 0.752  0.736
IM+DMF+HR™ 0.743 0.754
WISE 0.759 0.764

multimodal interaction mechanism as IM, the hierarchical rep-
resentation of audio data as HR and the deep multimodal fu-
sion network as DMF. In Table 2, we show the performance
of different variants of WISE. The IM+DMF method takes out
HR. By comparing its performance with WISE, it can be seen
that HR brings 3% WA improvement and 2.2% UA improve-
ment, showing that the hierarchical representation is important
to distill emotion signals from audio data. The performance
difference between HR+DMF and WISE suggests that IM indeed
helps more effectively capture emotion evolutions by promoting
word-level multimodal interactions, leading to improved perfor-
mance. IM+HR is a simplified version of WISE without the at-
tention layer. While not as prominent as IM or HR, temporal at-
tention leads to additional benefits. Finally, we consider a vari-
ant of HR that removes the phoneme level from the hierarchy,
denoted by HR™. We can observe that having phonemes as the
bridge between frames and words allows to eliminate emotion-
ally irrelevant information from low-level audio information.

5. Conclusion

In this paper, we studied the problem of SER by leveraging mul-
timodal features from audio and text. In view of the limitation
of existing methods that they normally fuse multimodal features
only at the utterance level, we proposed an interaction mech-
anism that captures the dynamic interplay between audio and
text features at the word level and that models the evolution of
emotions as an utterance develops. To support the word-level
representation of audio data, we devised a hierarchical repre-
sentation to derive more emotionally relevant audio features.
Based on these modules, we presented our WISE framework
which further learns the temporally aggregated features via an
attention mechanism. The experimental results show that our
solution outperforms the best state-of-the-art methods. Since
our solution relies on accurate ASR results, in future work we
will investigate the impact of ASR performance on WISE in
practical settings.
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