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Abstract
To improve the noise robustness of automatic speech recogni-
tion (ASR), the generative adversarial network (GAN) based
enhancement methods are employed as the front-end process-
ing, which comprise a single adversarial process of an enhance-
ment model and a discriminator. In this single adversarial pro-
cess, the discriminator is encouraged to find differences be-
tween the enhanced and clean speeches, but the distribution of
clean speeches is ignored. In this paper, we propose a dou-
ble adversarial network (DAN) by adding another adversarial
generation process (AGP), which forces the discriminator not
only to find the differences but also to model the distribution.
Furthermore, a functional mean square error (f -MSE) is pro-
posed to utilize the representations learned by the discrimina-
tor. Experimental results reveal that AGP and f -MSE are cru-
cial for the enhancement performance on ASR task, which are
missed in previous GAN-based methods. Specifically, our DAN
achieves 13.00% relative word error rate improvements over the
noisy speeches on the test set of CHiME-2, which outperforms
several recent GAN-based enhancement methods significantly.
Index Terms: speech enhancement, adversarial training,
speech recognition, CHiME-2

1. Introduction
Monaural speech enhancement aims at separating clean
speeches from the noisy backgrounds by using a single micro-
phone. Since monaural speech enhancement is formulated as
a supervised learning problem [1], many deep learning tech-
niques are introduced into this community, such as the convolu-
tional and recurrent networks [2, 3, 4].

In recent years, the generative adversarial network (GAN)
has been widely researched in the machine learning commu-
nity, which is optimized through an adversarial training pro-
cess [5]. In the GAN-based speech enhancement methods, a
discriminator is added to perform the adversarial training with
the enhancement model. Early GAN-based models, such as the
SEGAN [6], perform better than the conventional methods but
worse than their supervised counterparts [7] in terms of short
term objective intelligibility (STOI) [8] and perceptual evalu-
ation of speech quality (PESQ) [9]. Therefore, different loss
functions are explored for GAN-based enhancement methods in
[7]. By employing the relativistic adversarial loss [10], GAN-
based methods eventually achieve higher speech intelligibility
and perceptual quality than the supervised methods [11].

Inspired by the progress in improving the speech intelli-
gibility and perceptual quality, recent studies try to improve
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the noise (including reverberation) robustness of automatic
speech recognition (ASR) by adopting a GAN-based enhance-
ment method as the front-end processing. For the reverbera-
tion noises, GAN-based methods have improved the recogni-
tion performance of a multi-conditional trained (MCT) ASR
system [12]. For the additive noises, the GAN-based enhance-
ment method is explored on the logarithm compressed fbank
(log-fbank) domain, which reduces the word error rate (WER)
of a clean-trained ASR system [13]. However, this method fails
to improve the recognition performance of a MCT ASR sys-
tem without retraining the acoustic model [13]. To improve
the noise robustness of the MCT ASR system, an additional
phoneme classifier is involved into the adversarial enhancement
process, resulting in the multi-target learning scheme [14, 15].

Current GAN-based enhancement methods for robust ASR
comprise a single adversarial process, which encourages the
discriminator to learn the representations maximizing the dis-
tance between enhanced and clean speeches rather than model-
ing the distribution of clean speeches. However, without learn-
ing the distribution, the representations learned by the discrimi-
nator are less meaningful, which may mislead the enhancement
model, leading to the recognition performance degradation. To
overcome this problem, we propose the double adversarial net-
works (DANs), which consist of the adversarial generation pro-
cess (AGP) and the adversarial enhancement process (AEP). In
AGP, an additional generator is involved, and the discrimina-
tor is trained to model the speech distribution by playing the
min-max game with the generator. In AEP, the learned informa-
tion of speech distribution is propagated from the discriminator
to the enhancement model through an adversarial training pro-
cess. To utilize the learned representations, we further propose
a functional mean square error (f -MSE), in which the MSE is
calculated on a meaningful and distinguishable feature domain
defined by the discriminator.

2. Double adversarial networks
Double adversarial networks (DANs) consist of three compo-
nents, i.e. the discriminator D, the generator G and the en-
hancement model E. These three components play the min-
max games in two adversarial processes, i.e. AEP and AGP. An
overview of the proposed DAN is shown in Figure 1.

2.1. Adversarial enhancement process

In AEP, the primary task of enhancement model E is to recon-
struct the clean speech s from the noisy one x, and the discrimi-
nator D is trained to distinguish the real clean speech s from the
enhanced speech ŝ. By taking an adversarial training between
E and D, the enhancement model tries to fool the discrimina-
tor by producing speeches that are similar to their real clean
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Figure 1: The framework of double adversarial networks.

counterparts, and the discriminator is encouraged to learn the
representations that maximize the distance between enhanced
and clean speeches. The original adversarial loss function [5]
is prone to cause the problem of vanishing gradient in the early
stages of training, which leads to the model collapse and un-
stable training process [16]. In this paper, we employ the least
squares loss functions [17], which are similar to [6, 7]. The
adversarial loss functions of D and E are given as follows:

LD(E) =
1
2
Es⇠pclean [D(s)� 1]2

+
1
2
Ex⇠pnoisy [D(E(x))� 0]2 (1)

LE = E(s,x)⇠(pclean,pnoisy)ks�E(x)]k22
+ �Ex⇠pnoisy [D(E(x))� 1]2 (2)

where � is a hyper-parameter to balance the reconstruction and
adversarial losses.

The second term in (2) aims at fooling the discriminator.
However, the task of enhancement model is to reconstruct the
clean speech rather than simply fool the discriminator. There-
fore, a functional mean square error, f -MSE, is proposed to
replace the adversarial loss term. f -MSE evaluates the similar-
ity of enhanced and clean speeches in a more distinguishable
feature domain defined by the discriminator D. The modified
loss function for E is defined as follows:

LE = E(s,x)⇠(pclean,pnoisy)ks�E(x)]k22
+ �E(s,x)⇠(pclean,pnoisy)[D(s)�D(E(x))]2 (3)

There are three advantages of using f -MSE. First, it explicitly
involves the clean speech information into the loss term. Sec-
ond, this loss term still maintains the adversarial relationship
between E and D, therefore, it can also benefit from the adver-
sarial training. Third, f -MSE is calculated on a more distin-
guishable feature domain, which is learned and changed during
the adversarial training process.

2.2. Adversarial generation process

In AGP, an additional generator G is added and trained against
the discriminator. By taking the adversarial training between G
and D, the discriminator is forced to learn not only the differ-
ences between clean and enhanced speeches but also the distri-
bution of clean speeches. The loss functions for D and G are

given as follows:

LD(G) =
1
2
Es⇠pclean [D(s)� 1]2

+
1
2
Ez⇠pz [D(G(z))� 0]2 (4)

LG = Ez⇠pz [D(G(z))� 1]2 (5)

where z is a d-dimensional random vector following the stan-
dard Gaussian distribution N (0, 1).

2.3. Stabilizing the training process

GANs always suffer the instability during their training process
[18, 19]. In this paper, we employ the gradient-penalty (GP)
regularization [18] and a tuned update strategy to stabilize the
training process.

The GP regularization penalizes the discriminator if the out-
puts have too large gradients with respect to the inputs:

LD(GP ) = Ey⇠py [kryD(y)k2 � 1]2 (6)

where y is sampled from the convex combinations of the real
clean and fake speeches: y = ✏s + (1 � ✏)s̃. ✏ is a scalar
sampled from the uniform distribution [0, 1]. In DAN, both the
enhanced speeches ŝ and the generated speeches š are treated
as the fake samples: s̃ = ŝ [ š.

To further stabilize the training process, we update the mod-
els with a tuned strategy. Specifically, in a mini-batch, we
first update the discriminator five times, then the enhancement
model and the generator are updated one time. A similar unbal-
anced update strategy is also employed in [18].

By integrating the two adversarial processes and the
gradient-penalty regularization, the loss function for the dis-
criminator in DANs is obtained:

LD = LD(E) + LD(G) + �LD(GP ) (7)

where � is a hyper-parameter to control the GP regularization.
The loss functions for the enhancement model and the generator
are given in (3) and (5), respectively.

3. Experiments
3.1. Dataset

We evaluate the proposed methods on the CHiME-2 dataset
(track 2) [20]. In the training set, there are 7138 clean utter-
ances from the WSJ0 SI-84 training set, which are recorded by
83 speakers. To simulate a noisy reverberant environment, each
clean utterance is first filtered with a fixed Room Impulse Re-
sponse (RIR) corresponding to a frontal position at a distance of
2 m. Then, each reverberated utterance is mixed with a random
slice from the living room noise recording. The SNR level of
each mixture is randomly selected from -6, -3, 0, 3, 6, 9 dB. To
enrich the training data, an additive noisy environment is sim-
ulated without filtering the utterances with RIRs. In this data
augmentation (DA), a seven hours noise recording provided by
CHiME-2 is used to obtain the noisy mixtures, and the clean
utterances and SNR levels are the same as the training set.

The development and test sets are obtained in the same
manner as the training set, but the RIRs and noise slices are
different from the training set. The SNR levels for development
and test sets are the same as the training set. As a result, there
are 2,460 noisy utterances from 10 other speakers in the devel-
opment set, and the test set comprises 1,980 noisy utterances
from 12 other speakers.
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3.2. ASR system

The ASR system is implemented by using the Kaldi toolkit [21].
Following the Kaldi’s recipe for CHiME-2, we extract the mel-
frequency cepstral coefficients and built up a Gaussian mix-
ture model-hidden Markov model system to perform the force-
alignment. The aligned phoneme labels and log-fbank features
are used to train a DNN-based acoustic model (AM), which
is initialized with the restricted Boltzmann machine based pre-
training. This AM comprises 7 hidden layers with the sigmoid
activation function, and there are 2,048 units in each layer. The
input of AM is a stacked 11-frame log-fbank feature centered at
the current frame, and the desired output is the posterior prob-
ability of 1,960 state-clustered triphone classes. After four iter-
ations of alignment and retraining, the AM is further optimized
by the state-level minimizing Bayes risk criterion [22]. The
WSJ 5k trigram language model is employed, and the weighted
finite-state transducers is used for decoding.

In the official guideline provided by CHiME-2, the ASR
system is trained with the noisy utterances only, but we find
that such noisy-speech-only training strategy leads to an unac-
ceptable WER for clean utterances (about 90%). Therefore, we
train another ASR system with the clean and noisy utterances,
resulting in a MCT system, which has much lower WERs for
both clean and noisy utterances than the official one. In the fol-
lowing experiments, we employ this MCT ASR system as the
baseline to evaluate the proposed DANs.

3.3. Model settings

A convolutional recurrent network (CRN) [4] is employed
as the enhancement model E, which is fed with the 40-
dimensional log-fbank features of noisy speeches. The architec-
ture details are given in Table 1. Batch normalization [23] and
exponential linear units (ELUs) [24] are added after each con-
volution and deconvolution layers except the last layer, which
is followed by the sigmoid function only. In addition, there is
a skip connection between each convolution layer and its corre-
sponding deconvolutional counterpart. A widely used training
target, the ideal ratio mask (IRM) [25], is employed as the ex-
pected output of the enhancement model, which is calculated on
the fbank domain. By multiplying the predicted IRM and noisy
speech, the enhanced speech is obtained: ŝ = x�E(x), where
� represents the element-wise multiplication.

For the discriminator and generator, the architecture of DC-
GAN is adopted, which is stable during the training process
[16]. The log-fbank slices of 40 frames are randomly clipped
from the enhanced and clean features, which are treated as the
fake and real samples, respectively. To match the architecture
of discriminator, the log-fbank slices are upsampled to 64⇥ 64
by repeating the nearest neighbors. For the generator, a 128-
dimensional Gaussian random vector is employed as the input,
and the desired output is the upsampled log-fbank slices with
the size of 64 ⇥ 64, which are also treated as the fake sam-
ples. The features of each utterance are limited to [�1, 1] by
the min-max normalization. To match the value limitation, the
tanh nonlinearity is adopted in the output layer of the generator.
The Adam optimizer [26] is used to train the models with the
learning rate of 2 ⇥ 10�4 and the betas of (0.5, 0.999). The
utterance-level batch size for E is 16, and the slice-level batch
size for G and D is 64. � and � are set to 1 and 10, respectively.
More details can be found in our open source code1 . The best
model is selected by cross validation on the development set.

1Available at https://github.com/ZhihaoDU/du2020dan.

Table 1: The architecture of the enhancement model. Here T

denotes the number of time frames in the log-fbank features.

layer name input size kernel, stride output size
reshape 1 T ⇥ 40 - 1⇥ T ⇥ 40
conv2d 1 1⇥ T ⇥ 40 3⇥ 4, (1, 2) 16⇥ T ⇥ 20
conv2d 2 16⇥ T ⇥ 20 3⇥ 4, (1, 2) 32⇥ T ⇥ 10
conv2d 3 32⇥ T ⇥ 10 3⇥ 4, (1, 2) 64⇥ T ⇥ 5
conv2d 4 64⇥ T ⇥ 5 3⇥ 4, (1, 2) 128⇥ T ⇥ 2
conv2d 5 128⇥ T ⇥ 2 1⇥ 2, (1, 1) 256⇥ T ⇥ 1
reshape 2 256⇥ T ⇥ 1 - T ⇥ 256

lstm 1 T ⇥ 256 256⇥ 1024 T ⇥ 1024
lstm 2 T ⇥ 1024 1024⇥ 1024 T ⇥ 1024

fc T ⇥ 1024 1024⇥ 256 T ⇥ 256
reshape 3 T ⇥ 256 - 256⇥ T ⇥ 1

deconv2d 5 512⇥ T ⇥ 1 1⇥ 2, (1, 1) 128⇥ T ⇥ 2
deconv2d 4 256⇥ T ⇥ 2 3⇥ 4, (1, 2) 64⇥ T ⇥ 5
deconv2d 3 128⇥ T ⇥ 5 3⇥ 4, (1, 2) 32⇥ T ⇥ 10
deconv2d 2 64⇥ T ⇥ 10 3⇥ 4, (1, 2) 16⇥ T ⇥ 20
deconv2d 1 32⇥ T ⇥ 20 3⇥ 4, (1, 2) 1⇥ T ⇥ 40
reshape 4 1⇥ T ⇥ 40 - T ⇥ 40

3.4. Compared methods

We compare the proposed DAN with four recent GAN-based
speech enhancement methods. The first method is SEGAN [6],
which enhances the noisy speech in the waveform domain di-
rectly. In this paper, the same model architectures and training
strategies as [6] are implemented. The second one is SERGAN
[11], which is based on the relativistic average loss functions
[10]. In the original SERGAN, a fully convolutional U-Net ar-
chitecture is employed to enhance the waveform directly. Pre-
liminary experiments show that our used CRN in the log-fbank
domain outperforms the U-Net model in the waveform domain
in terms of WER. Therefore, we also implement another SER-
GAN, in which our used models (E and D) are trained by min-
imizing the relativistic average loss functions [10]. This model
is denoted as SERGAN-fbank. The third method is based on a
conditional GAN, where the pairs of desired clean masks and
noisy features are treated as real samples, and the pairs of pre-
dicted masks and noisy features are fake samples [7]. This
method is denoted as MaskCoGAN. The fourth one is a GAN-
based feature mapping model, which improves the recognition
performance in the reverberation environment [12]. It is de-
noted as DereverbGAN.

For fair comparison, we replace the enhancement models in
MaskCoGAN and DereverbGAN with our used CRN, since it
has been verified that CRNs achieve better performance [4, 27].
All methods are trained with the same training set (including
data augmentation), and all the models with the similar archi-
tecture are initialized with the same weights.

4. Results and Discussion
We first compare the proposed DAN with other methods, then
the effect of each module is evaluated. Finally, we explore the
outputs of D, G and E through the training process.

4.1. Model comparison

Table 2 shows the WER results of DAN and other GAN-based
methods under different SNR levels on the test set. From the ta-
ble, we can see that the recognition performance cannot be im-
proved by employing the SEGAN or SERGAN as the front-end
processing, which enhance the noisy speeches on the waveform
domain directly. By changing the enhancement domain from
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Table 2: The WER results of DAN and other GAN-based meth-

ods under different SNR levels on the test set.

Models -6dB -3dB 0dB 3dB 6dB 9dB Avg.
Baseline (MCT) 43.94 33.15 24.80 18.16 14.42 11.38 24.31
SEGAN [6] 74.88 68.01 60.13 48.17 40.18 33.60 54.16
SERGAN [11] 73.61 66.48 57.96 47.66 40.30 32.23 53.04
SERGAN-fbank 37.90 28.42 22.28 18.32 14.10 12.85 22.31
MaskCoGAN [7] 37.34 28.56 22.16 18.85 14.98 13.05 22.49
DereverbGAN [12] 41.21 31.30 24.75 20.73 16.39 14.53 24.82
DAN (ours) 36.35 27.12 20.74 16.84 13.69 12.16 21.15

Table 3: The impact of each module in terms of WER on the

development (Dev.) and test sets, where ⇥ and
p

indicate ex-

cluding or including the sub-module.

Models AGP AEP f -MSE DA Dev. (%) Test (%)

Baseline (MCT) - - - - 30.55 24.31
DAN

p p p p
25.13 21.15

1� CRN ⇥ ⇥ -
p

26.63 22.62
2� CRN+AEP ⇥

p p p
27.12 23.22

3� CRN+AGP
p

⇥
p p

25.58 21.45
4� DAN w/o f -MSE

p p
⇥

p
30.36 25.33

5� DAN w/o DA
p p p

⇥ 26.16 22.36
6� CRN w/o DA ⇥ ⇥ - ⇥ 26.68 22.95

waveform to log-fbank, WERs are reduced by SERGAN-fbank
under low SNR levels (60dB). SERGAN-fbank, MaskCoGAN
and DereverbGAN have the similar model architecture and ad-
versarial enhancement process as DAN, but all of them lack the
proposed adversarial generation process and functional mean
square error loss. As a result, our DAN achieves lower WERs
under all evaluated SNR levels on the test set than the compared
GAN-based methods. Specifically, the proposed DAN achieves
13.00% average relative WER improvements over the MCT
ASR system on the test set. In addition, while other GAN-based
methods degrade the recognition performance of the MCT ASR
system under high SNR levels (>0 dB), our method improve the
performance under all evaluated SNR levels (except 9 dB). This
indicates that our DAN has a better noise robustness than all of
the compared GAN-based methods.

4.2. Ablation study

The results of ablation studies are shown in Table 3. We first
remove all adversarial processes from DAN, resulting in the
fully supervised model, CRN. By comparing experiment 1�
with DAN, we can see that the WERs on both development and
test sets increase significantly without the adversarial processes,
which indicates that the proposed double adversarial training
strategy improves the performance on ASR task. Then, we eval-
uate the effect of adversarial processes one by one. Experiment
2� shows that simply performing the adversarial training be-

tween the enhancement model and discriminator even degrades
the recognition performance in terms of WER. On the contrary,
adding the adversarial generation process between the gener-
ator and discriminator improves the recognition performance.
Experiments 2� and 3� indicate that learning the speech dis-
tribution is crucial for adversarial training based enhancement
models, which is missed in previous GAN-based methods. By
comparing experiment 3� and DAN, we find that learning the
differences between the clean and enhanced speeches can fur-
ther improve the recognition performance. Experiment 4� in-

('( ))   0.5�
('(*( )
('((( )
('(

))   0.52
))   0.��
))   0.�2

('( ))   0.00
('(*( )
('((( )
('(
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Figure 2: The outputs of discriminator for random noises z,

generated speeches G(z), enhanced speeches E(x) and clean

speeches s through the training process. For clarity, the outputs

are activated by the sigmoid function �.

dicates that the proposed f -MSE can efficiently utilize the rep-
resentations learned by the discriminator, which is crucial for
DANs in terms of WER. By comparing experiment 5� and 6�,
we can see that, without data augmentation, the proposed DAN
still obtains lower WER than the fully supervised method. On
the contrary, when the data augmentation is employed, DAN
achieves another 1.21% WER reduction, which is better than
the supervised method, CRN (0.33% WER reduction). This
may indicate that DANs can utilize the data more efficiently.

4.3. Exploring the outputs of models

Figure 2 plots the outputs of D, G and E through the train-
ing process. We can see that the adversarial training process
of DAN is very stable, which is import for adversarial training
based methods. In the early stage of training, the discriminator
cannot distinguish the enhanced and clean speeches correctly.
Meanwhile, the generator only produces the noise-like samples,
which are not similar to the clean speech yet. Through the
double adversarial training, the discriminator becomes a pow-
erful classifier with meaningful representations, which can dis-
tinguish the random, generated, enhanced and clean samples.
Thanks to the discriminator, the generator produces speech-like
samples, and the enhanced speeches are very similar to their
real clean counterparts, resulting in the WER reduction.

5. Conclusions
In this paper, we propose the DAN-based monaural speech en-
hancement method for robust ASR, which consists of a discrim-
inator, a generator and an enhancement model. By performing
the adversarial training between the generator and discrimina-
tor, the representations of clean speeches are learned by the dis-
criminator. Meanwhile, through the second adversarial process
of the enhancement model and discriminator, the learned in-
formation is propagated to the enhancement model to guide its
training. According to the experimental results on CHiME-2,
we find that the proposed DAN significantly outperforms four
recent GAN-based methods in terms of WER. Furthermore, ab-
lation studies show that learning the speech distribution and us-
ing the proposed f -MSE are crucial for the robustness of speech
recognition, which are missed in previous methods. In addition,
the training process of DAN is very stable, which is important
for adversarial training based methods.
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