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Abstract
Simulated data plays a crucial role in the development and eval-
uation of novel distant microphone ASR techniques. However,
the commonly used simulated datasets adopt uninformed and
potentially unrealistic speaker location distributions. We wish
to generate more realistic simulations driven by recorded hu-
man behaviour. By using devices with a paired microphone ar-
ray and camera, we analyse unscripted dinner party scenarios
(CHiME-5) to estimate the distribution of speaker separation in
a realistic setting. We deploy face-detection, and pose-detection
techniques on 114 cameras to automatically locate speakers in
20 dinner party sessions. Our analysis found that on average,
the separation between speakers was only 17 degrees. We use
this analysis to create datasets with realistic distributions and
compare it with commonly used datasets of simulated signals.
By changing the position of speakers, we show that the word er-
ror rate can increase by over 73.5% relative when using a strong
speech enhancement and ASR system.
Index Terms: speech recognition, speech enhancement, data
simulation

1. Introduction
It is becoming commonplace to find voice assistants in homes.
These devices use an array of microphones to exploit spatial
cues to enhance speech in the desired direction whilst suppress-
ing competing sounds such as noise and competing speakers
in other directions. It is well known that these systems perform
better when there is a greater angular separation between speak-
ers. However, studies in the behaviour of people have shown
that in a social setting, people tend to stand close to each-other
[1]. We will explore this conflict by analysing the behaviour
of people in social settings and the impact it has on current
speech enhancement techniques and automatic speech recog-
nition (ASR). Knowing the true behaviour of speakers will help
in understanding how best to design future microphone array
algorithms and hardware.

To benchmark speech enhancement techniques, a con-
trolled environment is required where a version of the audio
before distortion is available. This is typically achieved using
databases of simulated signals, which are created by generating
room impulse responses (RIR) through simulation, e.g., the im-
age method [2], and then convolving the RIR with the clean au-
dio. Simulating the complexities of the real world is an incredi-
bly difficult task but an important gap that needs to be bridged to
provide meaningful results before algorithms are tested on real
data. Advances have been made in improving the realism of
simulations [3], for example, by simulating non-cuboidal room
shapes [4]. However, the distribution of speaker location is an
aspect that has been largely overlooked.

Often in multi-channel speech enhancement, when report-
ing results, an overall performance is presented with no infor-

mation on how the performance relates to the speaker separa-
tion distribution in the dataset being used. There are many im-
portant discussions to have when evaluating the performance of
speech enhancement systems such as the performance metric
that should be used [5]. We believe the separation of speakers
is an important topic that should also be discussed when eval-
uating these systems. This paper argues that current simulated
datasets such as [6, 7, 8] do not represent the spatial separation
of speakers in typical social settings and therefore, may produce
overpromising results. For this study, the video data captured
during the recording of the CHiME-5 dataset is used for the
analysis of speaker separation. We will use analysis from cam-
eras capturing videos from the perspective of 114 microphone
arrays recording 50 hours of social interaction in 20 homes. For
a full description, see [9].

The paper is organised as follows. Section 2 describes how
person location information was automatically extracted from
the videos, and the evaluation used to establish confidence in
the data. Then, in Section 3, this data is used to estimate the
real distribution of angular separation of speakers in CHiME-5
and finally, in Section 4, we explore the impact that enforcing
this realistic distribution has on speech enhancement and ASR.

2. Azimuth angle of speakers
The CHiME-5 dataset consists of 20 dinner party sessions, with
each party broken into three stages: cooking, dining and after-
dinner socialising. Each of these stages typically takes place in
different rooms of the house, i.e., Kitchen, Dining, Living rooms
respectively. A room is captured by two Microsoft Kinect V2
devices, consisting of a 4-channel linear microphone array and
a 1080p camera. The location of the devices was chosen such
that they were not obstructing the participants, i.e., at the edge
of the room looking into the party. This means the placement
of the devices do not necessarily maximise the separation of
speakers but more closely mimic the placement of a device in a
real home use case.

To find the angle of the speakers, we will map the position
of speakers in the image to an azimuth angle. The azimuth is
the target because like most linear arrays, the Kinect is linear
in the horizontal plane, as this is where most spatial diversity
occurs. This means for our analysis, the x pixel of a speaker in
the image is the most important feature to capture. The angle of
azimuth can be approximated from the x pixel using

pixel2angle(x) =
x× 84.1

1920
(1)

where x is the x pixel index, 84.1 is the field of view of the
camera in degrees, and 1920 is the resolution of the video.

To detect speakers, two different ‘out-of-the-box’ tools
were used, the Dlib CNN face detector [10] (face) and the Open-
Pose keypoint detection library [11] (pose). These tools can
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both be regarded as state of the art but have different strengths
and weaknesses. The face detection system is only able to lo-
cate a person if they are facing the camera or their profile view
is visible. The pose detection system is able to locate people
turned away from the camera but suffers from more false detec-
tions. These detection systems were run on each of the frames
in the 114 videos in isolation.

2.1. Creating hand-annotated ground truth

To establish the confidence in these tools, two different ground
truth annotations were created. First, isolated frames were an-
notated by sampling every five minutes in all the videos in the
development set and then annotating a bounding box around the
speaker’s face as well as annotating the position of the mouth1.
Second, annotations were created by a separate tool which al-
lows an annotator to use a mouse to track a person as they move
by following their mouth position. This tool allowed for far
more data to be annotated at the expense of reduced accuracy.
This process was repeated for all four speakers and three cam-
eras in one session of the development set.

2.2. Evaluation of detection

Performance of the detection systems was evaluated using two
evaluation metrics, which both use the frame annotations.

1. How well does it find people? (Detection)
2. When it detects a person, how accurate are the detec-

tions? (Accuracy)

Detection For face, a detection is considered correct if the in-
tersection over union score is above 30%. For pose, a detection
is correct if the nose position is within 53 pixels2 of the anno-
tated mouth position. The nose is used as this is the closest
keypoint to the mouth provided by the pose detection system.

The detections are paired up with the ground-truth such
that the maximum score is provided; this is legitimate because
we are not evaluating the speaker assignment. The results are
shown on the left-hand side of Table 1. The face-detection sys-
tem finds fewer people than pose as it fails when people are
facing away from the camera. However, high precision means
we can be fairly confident that it is finding true faces. Pose com-
plements these errors as it misses fewer people but yields more
false-positives. Note, a low recall will not hinder the separation
analysis that follows as long as the position of persons missed
is at random with respect to screen position (see Section 3).

Accuracy Next, we look at the accuracy of these detections
by measuring the horizontal and vertical distance in pixels to
the mouth, X and Y (Table 1, rhs). For the face detection sys-
tem this was estimated as a point on the horizontal centre of the
bounding box and 74%3 down from the top, and for the pose
detection system the nose keypoint position was used as an es-
timate of the mouth. The same assignment process is used as
before. The results show that both detection systems can locate
the mouth with around 1 degree of error (1 degree ≈ 23 pixels)
on average. (Note, in one device an oddly placed mirror mislead
the detection systems leading to many large unrepresentative er-
rors. This effect was not seen in any of the other 113 cameras
and so was treated as an outlier and the device was removed
from the evaluation.)

1https://github.com/jackdeadman/video-annotation-tools
2Threshold chosen by fitting a two-component Gaussian mixture

model on the paired data.
3The ratio which minimises the Y distance.

Table 1: Results are shown from eight devices in two different
sessions. (Pr: Precision, Re: Recall, F1: F-Score). 558 faces
have been hand-annotated. Video resolution: 1920 × 1080.
Accuracies are mean ± standard error.

Detection Accuracy (px)
Pr. Re. F1 X Y Euclid.

Face 98.7% 36.6% 52.5% 23±2 18±1 32±2

Pose 94.1% 60.5% 72.9% 24±3 27±2 40±4

Figure 1: Comparison of separation distributions when ran-
domly sampling with using active speakers.

3. Analysis of spatial separation
We now wish to use the angular position estimates from the
previous section to estimate angular separation between ac-
tive speakers. The CHiME-5 transcript can be used to recover
speaker activity state of identified speakers, but we only know
speaker identity for the small annotated video subset. We will,
therefore, assume that separation is independent of speaker ac-
tivity state after first testing this on the annotated subset.

For each video frame in which two or more active speak-
ers are detected by the face system, we pick two at random and
compute their angular separation. Note, this approach is valid
even considering the low recall of the detector assuming the
missed detections are missed at random with respect to location.
This is then repeated but now sampling pairs of people regard-
less of speaking activity state. The resulting distributions are
compared in Figure 1. The similarity of the distributions sug-
gests that person separation is largely independent of speaking
state. This may seem unusual, i.e., people speaking at the same
time might be expected to be closer together. However, over-
lapping speakers may be from competing conversations, and in-
active speakers are still ‘socially engaged’ and therefore stand-
ing at conversational distances from each other. The figure also
highlights the variety in the distributions between the different
devices. The distributions have clear distinct peaks indicating
speakers are often in the same locations.
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Figure 2: Comparison of the separation distributions created
from the two detection techniques.

We can now measure person separation across all 114 cam-
eras without regard for speaker activity state and take this as a
proxy for overlapped speaker separation. Analysis is repeated
with both face and pose detectors (Figure 2). Even though the
two systems have complementary errors, the resulting distribu-
tions are similar. Both distributions show that few detections
have a separation around 0 pixels. This observation is likely
due to the fact the detection systems are not able to detect a per-
son if that person is being occluded by another person, rather
than being directly caused by any specific human behaviour.

In Table 2 the overall statistics for the dataset are shown.
The mean and standard deviation for the position results are the
averages of the mean and standard deviation of each of the ses-
sions. We average over sessions as the initial placement of the
device will affect these statistics. Both the detection systems
have a slight skew but significant to the left, indicating a bias in
the detection systems. Both detection systems show how small
the separation angle is between the speakers, with both show-
ing similar separation angles even though the two different ap-
proaches have different characteristic.

Table 2: Position and separation of speakers throughout the din-
ner parties. The centre of the screen is 0 pixels/degrees. Results
are average ± standard deviation.

Position Separation
Screen (px) Angle (°) Screen (px) Angle (°)

Pose −23± 323 −1± 14 380± 268 17± 12
Face −35± 302 −2± 13 427± 274 19± 12

4. Analysis of simulated datasets
Having estimated the distribution of the speakers throughout
CHiME-5, we can compare this with the distribution of simu-
lated datasets. WSJ0-2mix [12] is a commonly-used dataset for
source separation, with a spatialised version introduced in [7].
The position of two people is randomly sampled inside a shoe-
box room with a constraint that speakers cannot be too close to
the microphone array and not too close to each other. The latter
constraint yields some not immediately obvious consequences.
In Figure 3 (left) we compare a proposed dataset where we sam-
ple positions according to the distribution we analysed, a recent

Figure 3: Comparison of the angular separation in simulated
datasets. We compare the datasets SMS WSJ [6] and WSJ0-
2mix spatialised [7] with adapted versions of their setup.

dataset SMS WSJ [6] and WSJ0-2mix spatialised. Here we can
see the overlaps between the proposed distribution and the two
datasets are surprisingly small. The minimum distance con-
straint in WSJ0-2mix spatialised means that few samples in the
dataset have a low separation angle. The proposed dataset was
created by exploiting the observation that the speaker positions
from the device are normally distributed, therefore to generate
the dataset the position standard deviation of 14 degrees was
used to approximate the separation distribution indirectly.

To illustrate the importance of reporting the angular separa-
tion we, will compare the performance of identical speech sepa-
ration and recognition systems when tested on the same dataset
but with only the speaker position distribution changing. We
report source separation metrics and word error rate (WER).

4.1. Experimental setup

Experiments use the baseline system described in [6], namely, a
complex angular central Gaussian mixture model (cACGMM)
[13] mask estimator is used with a Minimum Variance Distor-
tionless Response (MVDR) beamformer and a factorised time-
delayed neural network (TDNN-F) based acoustic model. For
the first set of experiments measure how the baseline perfor-
mance changes when the SMS WSJ dataset enforces a realis-
tic spatial distribution. In the original setup, the target speaker
was placed in the room by randomly sampling a distance and
an angle from the microphone array, and a competing speaker
is placed at a uniformly sampled angular distance. To gener-
ate the two speaker positions for the ‘realistic’ distribution, an
angle is uniformly sampled around the array. Using a Gaus-
sian distribution with a standard deviation of 14 degrees and a
mean set by that chosen direction, the two speaker directions are
sampled. The speaker distances are then chosen by sampling
uniformly from 1-2 metres, i.e., the same as SMS WSJ. The
remaining random parameters are identical to SMS WSJ. This
does not necessarily create a realistic setup because in CHiME-
5 the arrays were placed at the edge of the room and here they
are placed in the centre of the room. However, it does let us
see how the performance of the system changes when speakers
have the separation that was present in the real data.

The second set of experiments compares the WSJ0-2mix
spatialised setup (wsj0-original), with a variation of the setup
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Table 3: Results from changing the positions of people in the
SMS WSJ database. Oracle results are shown in grey.

Mask Enh. Data SDR PESQ STOI WER

cACGMM MVDR Prop. 9.0 1.85 0.74 31.49
cACGMM MVDR SMS 12.3 2.07 0.82 18.15

cACGMM Mask Prop. 7.1 1.73 0.71 49.09
cACGMM Mask SMS 9.5 1.83 0.78 40.01

None Ch=0 Prop. -0.4 1.49 0.66 78.93
None Ch=0 SMS -0.4 1.50 0.66 78.73

IBM MVDR Prop. 10.4 1.88 0.77 21.23
IBM MVDR SMS 12.9 2.06 0.83 14.23

where we place the microphones at the edge of the room (wsj0-
edges), in both cases speakers are positioned uniformly in the
room with constraints on minimum distances. These are then
compared with a setup with the microphones at the edges but
with the realistic distribution enforced. This uses the same an-
gle generation method as the previous experiment but with a
distance sampled from 1-3 metres (wsj0-edges-realistic). The
comparison of the distribution created from this setup is shown
in Figure 3 (right). Placing the microphones at the edge of the
room resulted in a distribution closer to the real data, but the
tail is still far larger than that observed in the real data. Note
the distribution of this realistic setup is slightly different from
the distribution created in the previous setup. This is due to the
resampling of points when they are outside of the room.

4.2. Results

The results from changing the placement of sources in
SMS WSJ are shown in Table 3. We can see that by only chang-
ing the location of speakers the WER of the cACGMM system
increases by over 13% absolute (73.5% relative) when using the
MVDR beamformer, this is a system that contains similar com-
ponents to the best performing systems on the CHiME-5 dataset
[14, 15]. If a system can be made that is more robust to smaller
separation angles, then there is huge potential to creating an
overall better-performing ASR system. The oracle Ideal Binary
Mask (IBM) comparison shows that even with perfect knowl-
edge, the beamformer approach performs significantly worse
with the new dataset. Multi-channel approaches that do not use
a beamformer may offer a solution to this [7, 16]; however, they
rely on closely matched training data.

Finally, the results from converting the WSJ0-2mix spa-
tialised setup to be a more realistically distributed dataset are
presented in Table 4 using the cACGMM MVDR system. Here
we only show source separation results as the baseline acous-
tic model would be mismatched with the data from this setup,
and the dataset does not provide an agreed-upon training set
for acoustic model training. Surprisingly, placing the micro-
phones at the edge of the room does not make the dataset any-
more challenging than the original setup, the performances are
fairly comparable. Once the more realistic distribution is en-
forced, then we see that the dataset becomes slightly more chal-
lenging. Interestingly, the performances are fairly comparable,
which is surprising considering the separation differences. Un-
like SMS WSJ, WSJ0-2mix spatialised does not contain any
background noise which could explain this similar performance.

Table 4: Source separation results

Dataset SDR PESQ STOI

WSJ0-original 15.1 2.50 0.83
WSJ0-edges 15.2 2.61 0.82
WSJ0-edges-realistic 14.5 2.28 0.71

5. Discussion
Often the methodology for generating speaker positions in gen-
erated datasets is to make it completely random, but as dis-
cussed throughout this work, this is not realistic. Constraints
such as enforcing a minimum distance between sources seem
sensible at first but can yield unrealistic distributions. With-
out reporting either the separation distribution of the dataset or
the performance of the source separation system with respect to
the separation angle, it is difficult to compare results across dif-
ferent works, as we have shown the WER can change by over
73.5% relative by only changing the location of sources. We
suggest that when generating simulated evaluation data to err to-
wards sources being closer together rather than using a uniform
distribution in order to more closely match real data. This work
has focused on just one parameter of simulation design, how-
ever, other equally important parameters are often overlooked
such as directivity patterns (i.e., the direction speakers are fac-
ing), the distance they are away from the microphone and the
degree of speaker overlap [17].

6. Conclusions and future work
In this paper, we have employed automatic ways to estimate
the angular distribution of speakers in a multi-speaker distant
microphone scenario using face-detection and pose-detection
techniques. We established confidence in these techniques by
creating hand labels with the objective to evaluate the effec-
tiveness of the tool on isolated frames and over the entire ses-
sion. Using this analysis, we showed that in the CHiME-5 sce-
nario where the camera has a field of view of 84.1 degrees, the
speakers that are visible have an average angular separation of
17 degrees. We compared this distribution to common simu-
lated datasets that are used to benchmark the state-of-the-art in
speech enhancement and found there is a large disparity. We
then showed that this disparity could have consequences for the
research community, such as leading research down the wrong
path by pursuing systems that optimise unrealistic angular sep-
arations.

In this work, we have analysed speaker position from the
perspective of devices. This work is currently being extended
to use the overlapping cameras in the CHiME-5 dataset to trian-
gulate positions of speakers in the room, allowing the distance
from the microphones to be estimated. Tracking techniques are
also being explored to use the continuity between frames. Fur-
ther to this, ways to integrate the video information into speech
enhancement and ASR are being explored, but as highlighted
in the analysis this is a challenging task as the modality often
has missing information, e.g., people are not always facing the
camera. The video data is not public, however, we are making
the extracted detections and ground truth labels available4.

4https://jackdeadman.github.io/chime5video
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