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Abstract
End-to-end multi-speaker speech recognition has been a pop-
ular topic in recent years, as more and more researches focus
on speech processing in more realistic scenarios. Inspired by
the hearing mechanism of human beings, which enables us to
concentrate on the interested speaker from the multi-speaker
mixed speech by utilizing both audio and context knowledge,
this paper explores the contextual information to improve the
multi-talker speech recognition. In the proposed architecture,
the novel embedding learning model is designed to accurately
extract the contextual embedding from the multi-talker mixed
speech directly. Then two advanced training strategies are fur-
ther proposed to improve the new model. Experimental results
show that our proposed method achieves a very large improve-
ment on multi-speaker speech recognition, with ∼25% rela-
tive WER reduction against the baseline end-to-end multi-talker
ASR model.
Index Terms: multi-talker speech recognition, cocktail party
problem, attention-based end-to-end, contextual embedding

1. Introduction
Over the past few years, much progress has been achieved in
single-speaker automatic speech recognition (ASR). Both end-
to-end systems and hybrid systems based on deep neural net-
works (DNN) and hidden Markov model (HMM) have shown
surprisingly good performance [1, 2, 3, 4, 5, 6, 7]. However, it
is still a challenging task when multiple speakers are involved,
which is known as the cocktail party problem [8, 9, 10].

A lot of research has been conducted to tackle the single-
channel multi-speaker speech separation and recognition prob-
lem. One of the core problems is known as the label ambi-
guity or permutation problem. In [11, 12, 13], a speech sepa-
ration method called deep clustering (DPCL) was proposed to
separate the speech mixture in a high-dimensional embedding
space, where embeddings from the same speaker are close to
each other and farther away otherwise. DPCL was then inte-
grated into the speech recognition framework as the separation
frontend [14, 15]. Following DPCL, [16] proposed a similar
technique called deep attractor network (DANet), which forces
time-frequency embeddings to cluster around different cen-
troids representing different speakers in the high-dimensional
space. In [17, 18], a simple yet effective speech separation
method named permutation invariant training (PIT) was pro-
posed to solve the label ambiguity problem during training, by
optimizing the objective of the best output-target pair assign-
ment. It was later applied to multi-speaker speech recognition
[19, 20, 21, 22, 23, 24] and showed promising performance.
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In this paper, we aim to further improve the robustness and
performance of the end-to-end single-channel multi-speaker
ASR systems. When humans recognize the interested speaker
from the mixed speech, in addition to the audio signal itself,
people will also utilize the context knowledge to better attend,
separate and recognize the target speaker’s speech. Inspired by
this hearing mechanism of human beings, we propose a novel
multi-talker speech recognition framework that can learn to ex-
tract contextual embeddings from the input mixture, and then
use it to boost the speech recognition. This method no longer
requires extra knowledge in advance for usage once the model is
trained, and it is very flexible and practical in real-world appli-
cations. Moreover, we propose two advanced training strategies
to further optimize the proposed architecture.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the baseline end-to-end monaural multi-
speaker ASR system. In Section 3, we describe the proposed
framework with the contextual language embedding learning
and the enhanced training strategies are also given. Experimen-
tal results are presented and discussed in Section 4 and conclu-
sions are given in Section 5.

2. End-to-End Multi-speaker Joint
CTC/Attention-based Encoder-Decoder

In this section, we revisit the basic end-to-end monaural multi-
speaker ASR system proposed in [25], which is the baseline
model in our experiments. It extends the joint CTC/attention-
based encoder-decoder system proposed in [4, 26, 27] to multi-
speaker cases by introducing a separation stage in the encoder
and applying permutation invariant training in the objective
function. The model architecture can be illustrated in the left
part of Figure 1, but without the additional information from
the contextual knowledge.

The input speech mixture O of J speakers is first fed into
the multi-speaker encoder, where it is explicitly separated into
J sequences of vectors, each representing a speaker source. The
multi-speaker encoder module is composed of three stages, i.e.
EncoderMix, EncoderSD and EncoderRec, which can be illus-
trated as follows:

H = EncoderMix(O) , (1)

Hj = EncoderjSD(H), j = 1, · · · , J , (2)

Gj = EncoderRec(H
j), j = 1, · · · , J . (3)

The encoded representations Gj are then fed into the joint
CTC-attention module, which is trained in a multitask manner.
The CTC objective function with permutation invariant training
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Figure 1: The proposed architecture for multi-speaker ASR
with contextual language embeddings.

is not only used as an auxiliary task to jointly train the encoder,
but also a solution to the label ambiguity problem as shown in
Eq. (4):

π̂ = argmin
π∈P

J∑
j=1

Lossctc

(
Yj ,Rπ(j)

)
, (4)

where P denotes the set of all possible permutations on
{1, · · · , J}, π(j) is the j-th element in a permutation π ∈ P ,
Yj denotes the output sequence computed by CTC from the
representation Gj , and R is the set of reference labels for J
speakers in the input mixture.

The best permutation π̂ with the minimum CTC loss is then
used in the attention-based decoder to determine the reference
label for each decoder output. For each pair of representation
and reference label index (j, π̂(j)), the decoding process can be
formulated as follows:

yjn ∼ Attention-Decoder(Gj , hn−1) , (5)

where subscript n denotes the n-th time step of decoding, and
hn−1 is the (n − 1)-th element in either the reference label
sequence Rπ(j) or the predicted label sequence Yj . The tech-
nique of choosing hn−1 during training is also known as sched-
uled sampling [28, 24], which can be described as the following
equations:

b ∼ Bernoulli(p) , (6)

hn−1 =

{
r
π̂(j)
n−1, if b = 0 ,

yjn−1, if b = 1 ,
(7)

where the history information hn−1 is chosen with a probability
of p from the the prediction and (1− p) from the ground truth.

The final loss function of the system is defined as the com-
bination of two objectives:

L =
∑
j

(
λLossctc(Y

j ,Rπ̂(j))

+ (1− λ) Lossatt(Y
j,π̂(j),Rπ̂(j))

)
,

(8)

where λ is the interpolation factor, and 0 ≤ λ ≤ 1.
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Figure 2: The proposed architecture for learning contextual
language embeddings from the multi-talker mixed speech.

3. End-to-End Multi-speaker ASR with
Contextual Language Embeddings

In this section, we describe the proposed approach for improv-
ing the end-to-end single-channel multi-speaker ASR system.
First, we propose a novel method that exploits contextual lan-
guage embeddings learning. Next, we introduce a multi-stage
training and an embedding sampling strategy that can further
improve the proposed architecture.

3.1. Contextual language embeddings learning

Monaural multi-speaker speech recognition is much more chal-
lenging than the single-speaker case, because separating multi-
ple streams from the input mixture is an underdetermined prob-
lem, with an infinite number of possible combinations of speech
streams. When humans recognize the target speaker from the
mixed speech, in addition to the audio signal itself, people
will also utilize the context-related information to better attend-
separate-recognize the target speaker’s speech. Inspired by this
human mechanism, we also want to explore the contextual in-
formation for recognizing the multi-speaker mixture.

One straightforward way is to utilize the intermediate rep-
resentations from the single-speaker end-to-end ASR system,
whose input is the parallel single-speaker speech in the mixture.
The original single-speaker speech can be fed into a pretrained
ASR model, and the outputs of the encoder can be regarded as
the contextual language embedding for that utterance.

Although it is practical to get the contextual embeddings
in this way for training, it is unreasonable to get the contex-
tual embeddings in the same way for testing, as the original
clean speech is usually unavailable. In order to address this
problem, we need to estimate the contextual embedding for
each speaker from the mixed speech directly. In this paper,
we design a novel knowledge distillation method to learning
the contextual embeddings for the mixed speech. Different
from the traditional knowledge distillation work, which usu-
ally forces the student model to mimic the output distribution
of the teacher [29, 30, 31, 23, 32], we do the knowledge dis-
tillation between single-speaker contextual embeddings and the
multi-speaker contextual embeddings, and perform the teacher-
student learning on the encoder representations of the single-
speaker ASR.

Figure 2 illustrates the knowledge distillation framework
for learning the contextual embeddings for the mixed speech.
The teacher is the encoder module of a pretrained end-to-end
single-speaker ASR system, which takes the individual speech
of each speaker as input and outputs the corresponding rep-
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resentation Gj
T (j = 1, · · · , J). The student is the embed-

ding prediction model, with a similar architecture to the en-
coder of the baseline ASR model introduced in Section 2. It
consists of three stages: The mixture encoder, EncoderMix,
first encodes the input mixture O as an intermediate repre-
sentation HS , which is further processed by J independent
speaker-differentiating (SD) encoders EncoderSD. The outputs
Hj
S (j = 1, · · · , J) of different SD encoders correspond to dif-

ferent speakers in the mixture. Finally, the recognition encoder,
EncoderRec,S, transforms the features Hj

S to high-level repre-
sentations Gj

S . Our goal is to learn the individual contextual
representations of both speakers directly from the mixture, thus
the loss function for the knowledge distillation can be formu-
lated as follows:

Lctx =
∑
j

L1;smooth

(
Gj
S ,G

π̂ctx(j)
T

)
, (9)

L1;smooth(x, y) =

{
0.5(x− y)2, if |x− y| < 1,

|x− y| − 0.5, otherwise,
(10)

where π̂ctx is the best permutation that minimizes Lctx through
permutation invariant training, and the smooth l1-loss is used
for calculating the final loss. Note that the models in Figure 2
are trained separately, and are then used to provide contextual
embeddings to the multi-talker ASR model in Figure 1.

Figure 1 shows the newly proposed multi-speaker ASR ar-
chitecture that integrates the contextual embeddings into the
ASR model. The major difference lies in the encoder output,
which can be formulated as follows:

Gj′ = Concat
(
Gj ,Gcontext

)
, j = 1, · · · , J , (11)

Gcontext = Concat
(
G1
α, · · · ,GJ

α

)
, α ∈ {T, S} , (12)

where Gj is the representation generated in Eq. (3), Concat(·)
denotes frame-wise concatenation. Note that the contextual em-
bedding Gcontext can be from either the single-speaker teacher
encoder (α = T ) or the embedding prediction model (α = S)
in multi-speaker ASR training, however only the predicted con-
textual embedding can be utilized in testing.

3.2. Advanced training strategies for the proposed model

In this subsection, we introduce two enhanced training strate-
gies to further improve the model performance.

The first training strategy divides the training process into
two stages. At the first stage, the multi-speaker ASR model
without contextual embedding is trained normally for several
epochs. Then at the second stage, we exploit the contextual
embeddings as described in Figure 2, and continue training the
model for the rest epochs. Our motivation is that the contex-
tual embeddings already contain enough acoustic information
for recognition, thus involving these features too early may re-
sult in an underfitted multi-speaker encoder, which can be sub-
optimal for training. Therefore, we propose the two-stage train-
ing strategy to allow the multi-speaker ASR model to be moder-
ately trained before the contextual embeddings are introduced,
which can prevent the model from abusing or overemphasizing
the context information.

The second training strategy utilizes both the oracle con-
textual embeddings from the single-speaker ASR encoder and
the predicted contextual embeddings from the prediction model
in training, while only the predicted contextual embedding is
used in testing. During training, we randomly sample from a

Bernoulli distribution in Eq. (6) to determine the source of the
contextual embeddings. More specifically, the contextual em-
beddings come from the oracle contextual embeddings with a
probability of p and from the predicted contextual embeddings
with a probability of (1−p). We refer to this strategy as embed-
ding sampling, and it shares some similarities with the sched-
uled sampling technique described in Section 2. It is also ca-
pable of mitigating the mismatch between training and testing,
and enhances the generalization of proposed multi-talker ASR
model with contextual embeddings.

4. Experiments
To evaluate the performance of our proposed methods, we use
the single-channel two-speaker mixed speech dataset artificially
generated in [32, 33], which is based on the Wall Street Journal
(WSJ0) speech corpus [34].

In this section, we first describe the experimental setup in
this work. Then the experimental results on the generated 2-
speaker mixed WSJ dataset are presented and discussed.

4.1. Experimental setup

As described in Section 4.1 in [32], the 2-speaker mixed
WSJ dataset is artificially simulated using the tool released by
MERL1. The sampling rate of the generated samples is 16 kHz.
In each sample, the SNR of one speaker against the other is uni-
formly sampled from [−5, 5] dB. The duration of the training,
development and evaluation sets is 88.2 hr, 1.1 hr and 0.9 hr re-
spectively. Note that this is a larger dataset than the benchmark
WSJ0-2mix [11] released by MERL, so that our models can be
fully trained.

The input features for all models are the 80-dimensional
log-Mel filterbank coefficients with pitch features on each
frame, together with their first- and second-order differences.
The features were extracted using the Kaldi toolkit [35], and
normalized to zero mean and unit variance for training.

The multi-speaker encoder used in Figure 1, as well as
the student model for contextual embedding prediction in
Figure 2, is composed of two VGG-motivated CNN blocks
(EncoderMix), one bidirectional long-short term memory layer
with projection (BLSTMP) for each speaker (EncoderSD), and
two shared BLSTMP layers (EncoderRec). The encoder of the
single-speaker ASR teacher model in Figure 2 has a similar
structure, with two VGG-motivated CNN blocks followed by
three BLSTMP layers. The decoders of both multi-speaker and
single-speaker ASR models consist of a single unidirectional
long-short term memory (LSTM) layer with 300 cells. All net-
works were built based on the ESPnet [36] framework with the
PyTorch backend.

In the training phase, the AdaDelta optimizer [37] with
ρ = 0.95 and ε = 10−8 was used, and the interpolation fac-
tor in Eq. (8) was set to λ = 0.2. In the decoding phase,
a word-level RNN language model (RNNLM) [38] was intro-
duced for rescoring, which was pretrained on the transcriptions
from WSJ0 SI-84 and has a single LSTM layer with 1,000 cells.
And the interpolation factor λ was set to 0.3, while the weight
for RNNLM was set to 1.0. As for knowledge-distillation learn-
ing, we used the same single-speaker ASR teacher model as in
[32, 33], which was trained on the original WSJ0 corpus. But
only the encoder module was used for later knowledge distilla-
tion, as described in Section 3.1. The probabilities for scheduled

1http://www.merl.com/demos/deep-clustering/create-speaker-
mixtures.zip
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Table 1: Performance (Avg. WER) (%) of the proposed contex-
tual embedding method on 2-speaker mixed WSJ corpus.

Model dev WER eval WER
PIT-E2E (baseline) [32] 21.28 23.41
+ scheduled sampling 18.96 22.83

++ context (oracle) 16.02 16.66
++ context (predicted) 16.55 18.83

sampling and embedding sampling are p = 0.4 and p = 0.7 re-
spectively in our experiments.

All models were trained for at most 15 epochs, and the
model with the best performance on the development set was
chosen for the final evaluation.

4.2. Evaluation on the proposed architecture

We first evaluate the performance of the baseline end-to-end
model and our proposed new model with contextual embedding
on the generated mixed speech evaluation set. The results are
presented in Table 1. The first baseline is the end-to-end multi-
speaker ASR system in [32], denoted as PIT-E2E, which has the
same architecture as in Section 2 but without using the sched-
uled sampling technique in Eq. (6) ∼ (7). It was trained in a
teacher-forcing manner, where the history information hn−1 in
Eq. (7) is always from the ground truth label rπ̂(j)n−1. We also
applied scheduled sampling to PIT-E2E, as shown in the sec-
ond row in Table 1, which serves as the second baseline. It
can be observed from Table 1 that the performance of the PIT-
E2E model can be slightly improved after applying scheduled
sampling during training, as it mitigates the training-inference
discrepancy caused by teacher-forcing during training. There-
fore, all our proposed methods apply scheduled sampling during
training by default.

Then we evaluate the upper bound of our proposed contex-
tual embedding method, where the contextual embeddings in
both training and testing come from the single-speaker teacher
encoder, denoted as context (oracle). As we can see in Ta-
ble 1, the performances on both development set and evaluation
set are significantly improved after exploiting the contextual
information, with more than 15% and 27% relative improve-
ment on the development set and the evaluation set respectively.
However, such contextual embeddings are not always available
for decoding, as the parallel clean speech from each speaker
is required. Therefore, we further evaluate the performance of
using the contextual embeddings from the prediction model, de-
noted as context (predicted), which does not rely on the par-
allel data for testing. Although we can observe a performance
degradation when comparing the predicted embedding with the
oracle embedding, it still significantly outperforms the baseline
methods, with over 12% and 17% relative improvement on the
development set and the evaluation set respectively.

4.3. Evaluation on embedding integration positions

The contextual embedding method used in the last subsec-
tion performs embedding integration after the last encoder
layer (EncoderRec). In this subsection, we further investigate
how different positions influence the performance of our pro-
posed method. We trained and evaluated the multi-speaker
ASR model with embedding integration after the mixture en-
coder (EncoderMix), which is a relatively shallow level, and
the results are illustrated in Table 2. We can observe that the

Table 2: Performance (Avg. WER) (%) of different embed-
ding integration positions for the proposed contextual embed-
ding method on 2-speaker mixed WSJ corpus.

Model Integration Position dev WER eval WER
context (oracle) after EncoderRec 16.02 16.66
context (oracle) after EncoderMix 17.79 21.94

Table 3: Performance (Avg. WER) (%) of different training
strategies for the proposed contextual embedding method on 2-
speaker mixed WSJ corpus.

Model dev WER eval WER
context (predicted) 16.55 18.83

+ embedding sampling 16.98 18.11
+ two-stage training 16.87 17.90

++ embedding sampling 16.90 17.70

performance is dramatically degraded when integrating con-
textual embeddings after EncoderMix compared to that after
EncoderRec. The appropriate embedding integrating position
is very important for the proposed method, and we will use in-
tegration after EncoderRec in the following experiments.

4.4. Evaluation on the different training strategies

In this subsection, we further explore different training strate-
gies proposed in Section 3.2 for optimizing the usage of the con-
textual embeddings. Table 3 shows the performance of models
trained with different strategies. As we can see, both proposed
training strategies can still bring a moderate but consistent im-
provement compared to the basic training procedure with con-
textual embedding. We further investigate the combination of
the two proposed strategies in training, as shown in the last row
of Table 3. As we can see, the performance is further boosted,
and ∼25% relative WER improvement is achieved finally com-
pared to the baseline model. This demonstrates the effective-
ness of our newly proposed method.

5. Conclusions

In this paper, we have proposed a novel context-aware multi-
speaker speech recognition framework, which is capable of
learning contextual embeddings directly from the input mixture
to improve the multi-talker ASR system. Different embedding
integration positions are investigated, and two training strate-
gies are designed to further improve the performance. The new
architecture can enable the system to act as human beings, uti-
lizing both audio and context information to attend to and sepa-
rate each target speaker in the mixed speech. The experimental
results on the artificially generated two-speaker mixed speech
corpus show that the newly proposed method can significantly
improve the multi-talker ASR performance.
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