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Abstract
The goal of this paper is speaker diarisation of videos collected
‘in the wild’.

We make three key contributions. First, we propose an au-
tomatic audio-visual diarisation method for YouTube videos.
Our method consists of active speaker detection using audio-
visual methods and speaker verification using self-enrolled
speaker models. Second, we integrate our method into a semi-
automatic dataset creation pipeline which significantly reduces
the number of hours required to annotate videos with diarisa-
tion labels. Finally, we use this pipeline to create a large-scale
diarisation dataset called VoxConverse, collected from ‘in
the wild’ videos, which we will release publicly to the research
community. Our dataset consists of overlapping speech, a large
and diverse speaker pool, and challenging background condi-
tions.

Index Terms: speaker diarisation, speaker recognition.

1. Introduction
Speaker diarisation is the challenging task of breaking up multi-
speaker video into homogeneous single speaker segments, ef-
fectively solving “who spoke when”. Beyond being an in-
teresting research problem in itself, it is also a valuable pre-
processing step for a number of applications, including speech-
to-text.

While state-of-the-art diarisation systems perform remark-
ably well for speech from constrained domains (e.g. conversa-
tional telephone speech [1, 2, 3, 4] or meeting speech [5]), this
success does not transfer to more challenging conditions found
in online videos ‘in the wild’. The challenges here include the
lack of a fixed domain (videos can be from talk shows, news
broadcasts, celebrity interviews, home vlogs), a large number of
speakers (some of whom are off-screen), short rapid exchanges
with cross-talk, and background degradation consisting of chan-
nel noise, laughter and applause.

These conditions make manual annotation of online videos
a daunting task for human annotators, leading to a dearth of
large-scale public diarisation datasets of unconstrained speech.
While large-scale evaluations are held regularly by the National
Institute of Standards in Technology (NIST-RTE), these are lim-
ited to constrained audio-only datasets, which are not freely
available to the research community (Table 1).

To attempt to remedy some these issues, the DIHARD chal-
lenges [6, 7] were introduced in 2018. These are valuable an-
nual challenges that cover 11 different data domains, including
mother-child conversations, meetings and courtroom settings.
One of these domains is also web videos, however there is a
limited amount of data (only 2 hours). The datasets are also
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audio-only, and are only available to challenge participants (not
released freely to the research community).

A large-scale diarisation dataset of videos ‘in the wild’
would encourage the development of new audio-visual diari-
sation techniques that deal with unconstrained conditions. In-
spired by the recent success of automatic audio-visual dataset
creation pipelines (VoxCeleb [8, 9, 10], VGGSound [11]), we
propose a scalable, audio-visual method for speaker diarisation
in web videos. Our method relies heavily on the recent suc-
cesses of active speaker detection [12] and face and speaker ver-
ification [13, 14, 15]. We then integrate this method into a semi-
automatic dataset creation pipeline – consisting of both auto-
matic annotation and manual verification. We use this pipeline
to curate VoxConverse, a challenging and diverse speaker
diarisation dataset from ‘in the wild’ videos.

Our automatic diarisation method exploits the following
three key ideas; Firstly, the speech for on-screen identities can
be accurately segmented automatically using active speaker de-
tection and then identified using face recognition, the core basis
for the VoxCeleb pipeline [10]. Second, there has been great
progress in creating audio-visual speech enhancement mod-
els [16, 17, 18], which separate overlapping speech into sin-
gle speaker streams. Given the amount of cross-talk and back-
ground noise in web videos, we use this model to better isolate
and identify speaker identities. The above two ideas allow us
to accurately identify and isolate speech for on-screen speakers.
Finally, to accurately recognise off-screen speakers, we utilise
state of the art speaker recognition embeddings that verify iden-
tities from audio alone (Figure 1).

Concretely, we make the following three contributions: (i)
We create an automatic audio-visual diarisation method us-
ing active speaker detection, face recognition, speech enhance-
ment and audio-only speaker recognition. (ii) We integrate our
method into a semi-automatic dataset creation pipeline which
consists of human annotation and automatic diarisation. Our
pipeline is scalable, and significantly reduces the number of
hours required to annotate videos. (iii) We use this pipeline
to curate VoxConverse, a challenging ‘in the wild’ audio-
visual diarisation dataset. We compare our audio-visual diari-
sation method to existing audio-only baselines on our dataset,
and show that large performance gains can be obtained from
integrating visual information.

2. Related works
Speaker diarisation has been an active field of research for many
years, but remains one of the most challenging tasks in speech
processing. Deep learning techniques have not been applied to
speaker diarisation to the same degree that they have for other
tasks, partially due to the lack of end-to-end models for diarisa-
tion, but also due to the lack of diverse, large-scale datasets like
ImageNet [19] and VoxCeleb [8].
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Much of the progress in the field has been driven by a series
of NIST Rich Transcription challenges (NIST-RTE), which fo-
cuses almost solely on the meeting domain. The series also pro-
posed the diarisation error rate (DER) as an evaluation metric
for speaker diarisation, which is now used as the primary met-
ric across all domains and evaluations. Research into speaker
diarisation has largely evolved independently for different do-
mains, with broadcast news [20], telephone speech [21], and
meetings [22, 23] being the most popular domains. For each
domain, specific datasets have been introduced and used, all
created by manual annotation. We provide a summary in Ta-
ble 1.

The DIHARD series of challenges [6, 7] were introduced to
overcome the domain dependency in the field – the data consists
of recordings from different conversational domains, including
audiobooks, broadcast interviews, child speech and so on. The
evaluation conditions are challenging, and even the best per-
forming systems score relatively high diarisation error rates of
around 20% with ground truth voice activity detector (VAD),
and 30% with system VAD. The annotation is performed with
very fine granularity, which allows evaluation without a forgive-
ness collar. Barring DIHARD, all other datasets and evaluations
include a generous forgiveness collar and exclude overlapping
speech from scoring. Inspired by DIHARD, we annotate over-
lapping speech in VoxConverse and include it in evaluation.
For almost all existing datasets, annotation is done manually
and solely using the audio. Annotation without visual informa-
tion is challenging, particularly when the number of speakers
is large, since it is easy to be confused between voices without
the additional identity redundancy provided by the face. Unlike
other works, our dataset creation pipeline is semi-automatic,
scalable and audio-visual.

Table 1: Comparison to existing speaker diarisation datasets.
Cond.: Acoustic conditions; Ann. Methd: Annotation Method;
†: Fisher English Training Speech part I and II.

Name Cond. Free Ann. Methd

2005 NIST RTE Meetings 7 Manual
CALLHOME [21] Telephony 7 Manual
AMI Meeting Corpus [23] Meetings 3 Manual
ICSI Meeting Corpus [22] Meetings 3 Manual
Fisher† I and II [24] Telephony 7 Manual
DIHARD [6, 7] Mixed 7 Manual

VoxConverse Multi-media 3 Semi-automatic

3. Dataset description
The development set of VoxConverse consists of 216 multi-
speaker videos covering 1,218 minutes with 8,268 speaker turns
annotated. The test set contains approximately 53 hours and
will be released after the VoxCeleb Speaker Recognition Chal-
lenge in October 2020. The statistics of the dataset can be seen
in Table 2.

Videos included in the dataset are shot in a large number
of challenging multi-speaker acoustic environments, including
political debates, panel discussions, celebrity interviews, com-
edy news segments and talk shows. This provides a number
of background degradations, including dynamic environmental
noise with some speech-like characteristics, such as laughter
and applause. Our dataset is audio-visual, and contains face de-
tections and tracks as part of the annotation.

The videos in the datasets consist of quick, short speech
segments. On average, 91% of the video time contains speech,
and 3–4% of this contains speech where one speaker overlaps
with another speaker. The overlap percentage varies between
videos; one video for example has an overlap percentage of
30.1%. Videos vary in length from 22 seconds to 20 minutes.
Unlike other domains such as telephony, each video has on av-
erage between 4 and 6 speakers, with one video in the dataset
having 21 speakers.

4. Dataset collection
The dataset collection process consists of two stages – initial an-
notations are generated automatically using our proposed audio-
visual method, and the annotations are then checked and refined
by human annotators.

4.1. Automatic pipeline

The automatic computer vision pipeline to cu-
rate VoxConverse is similar to that used to compile
VoxCeleb1 [8] and VoxCeleb2 [9].

Stage 1. Collection of videos. The first stage is to obtain a list
of videos. We start from a number of keywords including ‘panel
debate’ and ‘discussion’ in order to obtain videos where multi-
ple people are talking alternately or at the same time. The list
of videos is obtained by searching the keywords on YouTube,
and duplicate URLs that appear in the search results of multiple
keywords is removed. Moreover, we remove the videos that are
identical or very similar in content based on tf-idf features [25]
extracted from the YouTube auto-generated subtitles. The list
contains a range of videos, ranging from US presidential de-
bates and talk shows to documentaries.

Stage 2. Shot detection. Shot boundaries are then determined
to find within-shot frames for which face tracking is to be run.
The boundaries are found by comparing intensity and bright-
ness across consecutive frames [26].

Stage 3. Face detection and tracking. A CNN face detec-
tor based on the Single Shot Scale-invariant Face Detector
(S3FD) [27] is used to detect faces on every frame of the video.
This detector allows the detection of faces at various scales and
poses. Within each shot, face detections are grouped together
into face tracks using a position-based tracker, as in [8, 9].

Stage 4. Face-track clustering. A face recognition CNN is
used to extract embeddings for every face track. The network
used here is based on the ResNet-50 [28] trained on the VG-
GFace2 dataset. The embeddings are extracted 5 times per face
track at uniform intervals, and then averaged. The embeddings
are clustered using Agglomerative Hierarchical Clustering [29],
but a large penalty is added to the distance matrix between over-
lapping face track so that they are never clustered together.

Stage 5. Active speaker detection (ASD). The goal of this
stage is to determine if the visible face is the speaker. Two
systems are used for this purpose. The first method uses a vari-
ant [30] of SyncNet [31], which is a two-stream CNN that deter-
mines the active speaker by estimating the correlation between
the audio track and the mouth motion of the video. The second
method isolates the speech of the target speaker from a mixture
of sounds using an audio-visual speech enhancement (AVSE)
network [16] then uses an off-the-shelf voice activity detector,
WebRTC [32], to determine the speech segment.

Each method has its weaknesses – the SyncNet ASD acti-
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Table 2: VoxConverse dataset statistics. Entries that have 3 values are reported as min/mean/max. # spks: Number of unique
speakers per video. # mins: Total number of minutes in the dataset. video durations (s): Length of videos in seconds. speech %:
Percentage of video time that is speech. overlap %: Percentage of speech per video when 2 or more speakers overlap.

set # videos # mins # spks video durations (s) speech % overlap %

Dev 216 1,218 1 / 4.5 / 20 22.0 / 338.2 / 1097.4 10.7 / 93.2 / 99.8 0 / 3.8 / 28.7
Test 310 3,210 1 / 6.3 / 21 26.0 / 621.2 / 1200.0 11.5 / 89.8 / 100 0 / 3.0 / 30.1

Figure 1: Output of our automatic audio-visual diarisation method. Green squares on the images represent face detections with positive
ASD output, red squares represent face detections with negative ASD output. The identities are labelled as ID 6, ID 7 and ID 8, and
speaker timelines show when each identity is speaking. For clarity, we only show 3 frames from the video. Our method elegantly deals
with visual speakers, overlapping speech and undetected/off-screen speakers.

vates when the phoneme in the background speech matches the
viseme shown on the target face since the model does not con-
sider temporal context; the WebRTC voice activity detector is
often activated from the residual signal left in the AVSE output
which, despite the reduced power, causes false alarms. There-
fore, a face track is considered to be speaking only if both of the
methods agree, which helps reduce false alarms from laughter
and music.

Stage 6. Labelling off-screen speech. A pre-trained speaker
recognition model [33] is used to verify the identity of speech
that comes from off-screen speakers. Any parts of the audio
with positive voice activity detector (VAD) output, but with no
visible active speaker is considered to be an off-screen speech
segment. Speaker embeddings are extracted for the whole
video, then the off-screen speech segments are compared to
all speech segments with visible active speaker using the co-
sine distance between the embeddings. If the cosine distance
is below a threshold, the off-screen segment is assigned to the
speaker; if not, the segment is left as unknown for the human an-
notator to verify. This procedure is closely related to the multi-
modal diarisation method of [34].

Discussion. In creating the VoxCeleb datasets, very conserva-
tive thresholds were used in both active speaker detection and
face verification, since it was necessary to be very certain about
the speaker labels without any human intervention. This is,
however, at the cost of high false rejection, which meant that
a large number of true speech segments were discarded.

In contrast, a speaker diarisation dataset must contain con-
tinuous audio recording with different identities speaking in
turns. Therefore, we cannot discard parts of video based on

low confidence, but the entire video must be labelled in full.
The thresholds are optimised to minimise the overall Diarisa-
tion Error Rate (DER) (see section 5), since high false alarms
and high false rejections both lead to increased man-hours dur-
ing the manual verification and correction stage. Note how our
pipeline consists of two ASD methods, as we show later, this
redundancy is beneficial for performance.

4.2. Manual verification

The output of the automatic pipeline has been checked and cor-
rected by the authors of this paper using a customised version
of the VGG Image Annotator [35, 36]. This was done so that
the authors can identify the failure modes and make guidelines
for the external annotators when the process is scaled up. The
tool allows the user to watch and verify the annotation at various
speeds, and with aid of video.

During the annotation process, a number of failure modes
were identified. The most common is non-visible speech seg-
ment assigned to the wrong speaker, but false alarm of the VAD
and missed overlapped speech are also relatively common.

Guidelines. Speech segments are split when pauses are greater
than 0.25 seconds. Unlike some previous datasets in diarisation,
laughter is not assigned to identities, as it is difficult to assign
an accurate label to audience laughter. Anything that can be
transcribed, including short utterances such as ‘yes’ and ‘right’,
are considered to be speech. Known speakers are named in the
annotation process to facilitate easier cross-checking. The an-
notators are asked to be as careful as possible that the marked
boundaries are within 0.1 seconds of the true boundary.

Quality check. In order to verify the quality of manually

301



checked annotations, a subset of the data has been labelled in-
dependently by two different annotators. This subset contains 1
hour of material from 15 YouTube videos. The diarisation error
rate between the two annotations is approximately 1%, using
the labels from one annotator as the reference and the other as
the prediction. This error can be mostly attributed to disagree-
ments on the source of off-screen speech segments.

Discussion. Diarisation labels for ‘in the wild’ conversations
are difficult to obtain. It is almost impossible to manually an-
notate the segments in our dataset without the video. Even with
the video, it can take 10 times the video duration to annotate
segments to satisfactory quality if starting from scratch, partic-
ularly for many speakers. In contrast, the verification of our
audio-visual method output takes around twice the video dura-
tion, and is possible with less experienced annotators.

The time taken to annotate correlates strongly to the quality
of the output from the automatic method. The first few videos
in the development set were annotated with initial hyperparam-
eters that gave relatively poor performance. The diarisation
labels were then manually fixed, and the parameters were re-
tuned on this data to minimise the diarisation error rate. More
videos were then generated using the new set of parameters and
this process was repeated a few times. While it is possible that
some types of errors are more time-consuming for humans to
fix compared to others, we have observed that the annotation
became faster after each iteration.

5. Experiments
We compare our audio-visual method to an audio-only DI-
HARD 2019 baseline, and also compare performance to two
ablations.

DIHARD 2019 baseline. The second DIHARD [6, 7] chal-
lenge provides a baseline system based on the JHU submission
of the first DIHARD challenge. We use this public code1 as an
audio-only baseline.

The overall procedure is as follows. Speech segments are
obtained using VAD, and divided into short overlapping seg-
ments (1.5s with 0.75s overlap). Speaker embeddings are ex-
tracted using the x-vector [37] system, and the similarities be-
tween the embeddings are scored with a pre-trained probabilis-
tic linear discriminant analysis (PLDA) [38, 39] model also pro-
vided in the code. Segments are then grouped using agglomer-
ative hierarchical clustering (AHC) based on PLDA scores. We
report the best performance by tuning the threshold of the AHC
on the development set.

Two variants are compared, with and without the speech
enhancement module [40] which has been made publicly avail-
able2. The system uses a Long short-term memory (LSTM)
based speech denoising model trained on simulated training
data. This model shows state-of-the-art performance on speech
enhancement, and has shown its effectiveness for diarisation in
the first DIHARD challenge.

Ablations. A crucial design choice that we made is that we used
two active speaker detection methods, and a segment was only
marked positive when both methods gave a positive output. We
consider two ablations of our method – one using only SyncNet-
based ASD, and the other using only AVSE-based ASD.

Evaluation protocol. Methods are evaluated on the
VoxConverse development set. We use the diarisation er-

1https://github.com/iiscleap/DIHARD 2019 baseline alltracks
2https://github.com/staplesinLA/denoising DIHARD18

Table 3: Results on the dev set using baseline methods and our
proposed audio-visual method. All values are in %. MS: missed
speech; FA: false alarm; SC: speaker confusion; DER: diarsa-
tion error rate (where DER = MS + FA + SC). For each
metric, the lower the better. † Audio-only baselines.

Name MS FA SC DER

DIHARD 2019 baseline [6] † 11.1 1.4 11.3 23.8
DIHARD 2019 baseline w/ SE [6, 40] † 9.3 1.3 9.7 20.2

Ours (SyncNet ASD only) 2.2 4.1 4.0 10.4
Ours (AVSE ASD only) 2.0 5.9 4.6 12.4
Ours (proposed) 2.4 2.3 3.0 7.7

ror rate (DER), defined as the sum of missed speech (MS), false
alarm speech (FA), and speaker misclassification error (speaker
confusion, SC). A forgiveness collar of 0.25 seconds is applied
in order to compensate for small inconsistencies in annotation.

Training. All thresholds are tuned on the VoxConverse de-
velopment set. The AHC threshold for speaker clustering is the
only hyperparameter to be tuned in the audio-only baseline. The
audio-visual method requires three key thresholds – cosine dis-
tance for face clustering, SyncNet confidence for active speaker
detection, and cosine distance for speaker identification. The
first of these affect performance the most, since any error in the
identity clustering directly causes speaker confusion.

Results. Table 3 shows the results of all the evaluations. Our
audio-visual method obtains a DER much lower than the audio-
only state-of-the-art baselines, showing the efficacy of using vi-
sual information for diarisation on this dataset. The ablation
analysis for the ASD methods proves the effectiveness of using
two active speaker detectors – the combined method has a sig-
nificant decrease in false alarm rate for only a small increase in
missed speech.

With regards to the difficulty of VoxConverse, we note
that the DIHARD 2019 baseline obtains a DER of about 20%
on our dataset (Table 3), and hence there is a lot of room for
improvement. While this is lower than the 26% that the same
model achieves on the extremely challenging DIHARD devel-
opment set (with ground truth VAD), we hypothesize that this
difference may be attributed to the use of a 0.25-second forgive-
ness collar in our evaluation protocol.

6. Conclusion
We have developed a high performance audio-visual algorithm
for automated diarisation, and used it to generate a new speaker
diarisation dataset, VoxConverse, from ‘in the wild’ videos.
The pipeline is fully scalable and effective across a range of
domains. VoxConverse currently contains 70 hours of anno-
tated video, but we are in the process of scaling up. The data
will be used in the second VoxCeleb Speaker Recognition Chal-
lenge in October 2020 and, after that, will be released publicly
to the research community free of charge.
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