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Abstract
Speaker diarization can be described as the process of extract-
ing sequential speaker embeddings from an audio stream and
clustering them according to speaker identities. Nowadays,
deep neural network based approaches like x-vector have been
widely adopted for speaker embedding extraction. However, in
the clustering back-end, probabilistic linear discriminant anal-
ysis (PLDA) is still the dominant algorithm for similarity mea-
surement. PLDA works in a pair-wise and independent man-
ner, which may ignore the positional correlation of adjacent
speaker embeddings. To address this issue, our previous work
proposed the long short-term memory (LSTM) based scoring
model, followed by the spectral clustering algorithm. In this
paper, we further propose two enhanced methods based on the
self-attention mechanism, which no longer focuses on the lo-
cal correlation but searches for similar speaker embeddings in
the whole sequence. The first approach achieves state-of-the-
art performance on the DIHARD II Eval Set (18.44% DER af-
ter resegmentation), while the second one operates with higher
efficiency.
Index Terms: speaker diarization, similarity measurement,
self-attention, spectral clustering, DIHARD II

1. Introduction
Speaker diarization can be considered as the process of parti-
tioning multi-speaker speech into short segments and clustering
them according to speaker identities. It solves the “who spoke
when” problem [1, 2], which has a wide range of applications
in real-life scenarios such as meetings, telephone calls and child
care.

A typical diarization system usually consists of multiple
modules, as demonstrated in Figure 1. First, voice activity de-
tection (VAD) detects speech in audio streams and removes the
non-speech portions [3, 4, 5, 6]. Second, speaker changepoint
detection (SCD) [7, 8] or uniform segmentation [9] partitions
speech into multiple speaker-homogeneous segments. Third,
speaker embeddings like i-vector [10], x-vector [11] and Deep
ResNet vectors [12, 13] are extracted from the segments. Then
similarity measurement algorithms such as cosine distance and
PLDA [14, 15] compute scores between any two speaker em-
beddings in the sequence, followed by the clustering algorithms
like agglomerative hierarchical clustering (AHC) [9, 16], K-
means [17] and spectral clustering [17, 18] to generate the di-
arization outputs.

In general, conversations raised by speakers are highly
structured, and turn-taking behaviors are not randomly dis-
tributed over time. When the speech regions are uniformly
split into short segments, speaker embeddings extracted from
adjacent segments are of high correlation. However, PLDA
measures the similarity between arbitrary two speaker embed-
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Figure 1: A typical speaker diarization pipeline.

dings in a pair-wise and independent manner, namely vector-
to-vector scoring, which ignores the positional correlation of
the measured segments. In [18], we proposed a novel vector-
to-sequence scoring model based on LSTM, and computed the
similarity scores between one speaker embedding and the whole
embedding sequence. The manner helped capture structural in-
formation from both forward and backward directions. Dur-
ing the past DIHARD II competition, the new scoring model
was put into use and proved to be effective in challenging sce-
narios [19]. In this paper, we enhance the similarity measure-
ment process with the self-attention mechanism. The first ap-
proach is an extension of the vector-to-sequence scoring man-
ner, which replaces the LSTM structure with Transformer en-
coders while remaining input features and supervised target
labels unchanged. Noticing that the vector-to-sequence scor-
ing process is time-consuming, we further propose the second
method: a faster sequence-to-sequence scoring model.

The rest of this paper is organized as follows. Section 2 in-
troduces the LSTM based scoring model and the spectral clus-
tering algorithm. Section 3 describes our two proposed methods
based on the self-attention mechanism. Experimental results
and discussions are presented in Section 4, while conclusions
are drawn in Section 5.

2. Related works
Suppose that x1,x2, ...,xn are a sequence of speaker embed-
dings extracted from an audio stream. In the similarity mea-
surement stage, our goal is to construct the similarity matrix
S ∈ R

n×n, where Si,j is the similarity score between xi and
xj .

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-1908284



2.1. PLDA

To construct the complete similarity matrix, the PLDA algo-
rithm goes through all pairs of speaker embeddings (xi,xj).
For each pair, it computes the corresponding score as follows:

Si,j = fPLDA(xi,xj) = xiQxi + xiPxj + xjQxj + const
(1)

Matrices P and Q are trainable parameters of PLDA, and const
is a constant value. In this case, PLDA does not consider the in-
formation from neighborhoods of the two speaker embeddings.

2.2. LSTM based vector-to-sequence scoring

Speaker embeddings extracted from adjacent segments are more
likely to be assigned to the same speaker, especially when the
audio is segmented by uniform segmentation. To utilize this
property, we proposed the LSTM based scoring model and com-
puted similarity scores in a vector-to-sequence manner in [18].
Given the x1,x2, ...,xn sequence, xi is selected and repeat-
edly concatenated with all of the speaker embeddings. Then the
concatenated sequence is fed into the LSTM scoring model and
generates corresponding similarity scores as the i-th row of the
similarity matrix:

Si = [Si,1, Si,2, ...Si,n] = fLSTM

([
xi

x1

]
,

[
xi

x2

]
, · · · ,

[
xi

xn

])
.

(2)
Output Si,j denotes the similarity score of input concatenated
vectors xi and xj , which is expected to be 1 for the same
speaker and 0 for different speakers. To construct the complete
similarity matrix S, we run the model for n times with i rang-
ing from 1 to n, and stack the outputs S1,S2, ...,Sn row by
row vertically. For more details, please refer to [19].

2.3. Spectral clustering

Spectral clustering is a graph based clustering algorithm [20]. It
regards S as an undirected graph and Si,j as the weight of the
edge the between node i and j. By cutting off weak edges, the
algorithm partitions the original graph into multiple subgraphs.
Each subgraph represents a cluster. In this work, we employ
spectral clustering as the back-end clustering method.

3. Proposed methods with self-attention
One limitation of the LSTM structure is that it focuses more on
local information and may fail in long-term dependent tasks, al-
though it has done much better than the conventional recurrent
neural networks. To address this problem, Google proposed the
Transformer structure with self-attention in language transla-
tion [21], which has been adopted in many different research
fields recently. Since speakers who once spoke may appear
again anywhere in the conversation, speaker diarization can also
be categorized as a long-term dependent task. Therefore, we at-
tempt to improve the model using the self-attention mechanism.

3.1. Attentive vector-to-sequence (Att-v2s) scoring

We keep inputs and supervised targets of the LSTM based
method unchanged, and replace the neural network with the
Att-v2s model. As depicted in Figure 2(a), the concatenated
speaker embeddings are fully connected by the first linear layer
and fed into two stacked encoder layers. Then feature mappings
pass through the second linear layer with the Sigmoid function
and generate similarity scores. The encoder layer is almost the

Figure 2: (a) The attentive vector-to-sequence (Att-v2s) scoring
model. (b) The attentive sequence-to-sequence (Att-s2s) scoring
model.

same as the one in Speech-Transformer [22, 23], with the posi-
tional encoding layer removed. As shown in Figure 3, it mainly
includes a multi-head self-attention module and a feed-forward
module, both with layer normalization [24] and residual con-
nection [25].

3.1.1. Multi-head self-attention module

The multi-head self-attention module consists of h parallelized
self-attention heads. For the i-th head, feature mappings E ∈
R

n×d are converted into query matrix Qi ∈ R
n×dq , key matrix

Ki ∈ R
n×dk and value matrix Vi ∈ R

n×dv respectively by
different linear layers. The Scaled-Dot Product Attention block
copes with these three matrices as follows:

headi = Attention(Qi,Ki,Vi) = Softmax(
QiK

�
i√

dk
)Vi. (3)

Usually we set dq = dk = dv and the Softmax function is per-
formed in a row-wise manner. Then results from different heads
are concatenated over the last dimension and fully connected:

MultiHead = Linear(Concat(head1, head2, ..., headh)). (4)

3.1.2. Feed-forward module

The feed-forward module consists of two linear layers, with the
ReLU function in between. The dimension of input and output
keeps the same, and the inner-layer is high-dimensional.

3.2. Attentive sequence-to-sequence (Att-s2s) scoring

To construct the complete similarity matrix S, we need to run
the Att-v2s scoring model for n times. It is computationally
expensive and increases the operation time of the whole di-
arization system. To deal with this issue, we propose the atten-
tive sequence-to-sequence (Att-s2s) scoring model, which cal-
culates the complete similarity matrix S in one shot.

As demonstrated in Figure 2(b), the overall structure of
the Att-s2s scoring model is highly similar to the Att-v2s
model. The main difference is that we replace the second lin-
ear layer with matrix production ZPZ�, where matrix P is
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Figure 3: Structure of the encoder layer.

the trainable neural network parameters and initialized as iden-
tity matrix. Besides, the input is the original speaker embed-
ding sequence instead of the concatenated one, and the out-
put is directly the whole similarity matrix. Suppose that Z =
[z1, z2, ..., zn]

� ∈ R
n×d, and the matrix production can be

expanded as follows:

ZPZ� =

⎡
⎢⎣
z�
1 Pz1 · · · z�

1 Pzn

...
. . .

...

z�
n Pz1 · · · z�

n Pzn

⎤
⎥⎦ . (5)

z�
i Pzj computes the similarity score between zi and zj ,

which is inspired and simplified from computation of PLDA
in Eq. 1. We normalize the score to the range of (0, 1) by the
Sigmoid function.

Without self-attentive encoder layers, the Att-s2s model de-
grades to the weighted inner-product. Thus we are interested in
what the role of self-attention is in the process. As we know,
speaker embeddings extracted from short utterances may be not
representative enough for identifying a speaker due to the pho-
netic and other types of variabilities. To improve the robust-
ness, we could choose longer segments for embedding extrac-
tion, or average the speaker embeddings from multiple short ut-
terances of the same speaker. For diarization audios where mul-
tiple speakers are involved, we tend to adopt short segments to
satisfy the speaker homogeneity. Therefore, the left solution is
to average speaker embeddings. The self-attention mechanism
makes it by searching for similar speaker embeddings over the
whole sequence and summing them up with learnable weights.
As depicted in Figure 4, speaker embeddings x1,x2, ...,xn are
first transformed to v1,v2, ...,vn by the linear layer. At the
t-th moment, vt pays attention to the speaker embeddings that
are of high correlation to itself, and assigns them with differ-
ent weights Wt = [wt,1, wt,2, ..., wt,n]. The larger weight in-
dicates higher similarity. By weighted sum of speaker embed-
dings wt,1v1+wt,2v2+...+wt,nvn, this mechanism generates
a more robust speaker representation.

4. Experimental results and discussions
For simplicity, we employ the oracle VAD to remove non-
speech regions from audio streams. Speech regions are seg-
mented by uniform segmentation with the window of 1.5s

Figure 4: Explanation of the self-attention mechanism in
speaker diarization. Different colors denote different speakers.

length and 0.75s shift. Each segment is labeled with the most
talkative speaker in the central 0.75s region.

4.1. Speaker embedding extraction

Deep ResNet vector [13] is employed as the speaker embed-
ding. Structure of Deep ResNet vector is similar to x-vector, but
replaces the time delay neural network (TDNN) front-end with
ResNet34. Specifically, it includes three main components: the
ResNet34 front-end, the statistics pooling layer and the feed-
forward layer. Detailed implementation can be referred in [13].

We take Voxceleb1&2 [26] corpora and their data augmen-
tation for training, which includes 7323 speakers in total. 64-
dimensional fbanks are extracted as the input features, with 25
ms length and 10 ms step. The dimension of Deep ResNet vec-
tor is 128.

Independent evaluation is carried out on the Voxceleb1 test
Set and the equal error rate (EER) is reported. Besides full-
length utterances (full-len), we also evaluate utterances limited
to 1.5 seconds long (1.5s * 1). Moreover, we split the long utter-
ance into multiple 1.5s segments, extract corresponding speaker
embeddings, and then average them for the evaluation scenario
(1.5s * N). Results are shown in Table 1. As expected, Deep
ResNet vector in the full-length test condition achieves a low
EER of 1.51%, and the performance degrades rapidly to 6.74%
EER with the test duration limited to 1.5s. When we aver-
age multiple 1.5s speaker embeddings for each full-length ut-
terance, the EER recovers to 1.98%.

Table 1: Evaluation of Deep ResNet vector on Voxceleb1 test.

full-length 1.5s * 1 1.5s * N

EER(%) 1.51 6.74 1.98

4.2. Datasets

Public meeting corpora AMI [29] and ICSI [30] are employed
for training the scoring models, about 170 hours in total. Au-
dios are recorded in 16k sample rate, and the average duration is
around 40 minutes. In the data preparation stage, thousands of
1.5s speaker embeddings are extracted from each audio. Then
during the training stage, we randomly truncate 100 to 400
speaker embeddings from the selected audio.
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Table 2: Evaluation on DIHARD II corpus. Results are reported with and without domain adaptation by the Dev Set.

Model +VB Dev Eval Eval + adaptation Time cost (Eval)
DER(%) JER(%) DER(%) JER(%) DER(%) JER(%)

LSTM
× 19.65 49.60 20.57 50.25 19.72 46.49 67 min√

19.48 49.21 19.98 49.42 19.26 45.91 -

Att-v2s
× 19.07 47.43 20.15 47.84 18.98 43.20 148 min√

18.76 46.77 19.46 47.01 18.44 42.52 -

Att-s2s
× 19.39 48.42 21.46 48.71 21.45 43.19 24 s√

19.16 47.99 20.78 47.92 20.12 41.73 -

PLDA × 23.48 57.17 - - 23.73 56.84 51 s

DIHARD II winner system [27] 18.42 44.58

DIHARD II official baseline [28] 25.99 59.51

Models are evaluated on the DIHARD II corpus [28], in-
cluding the Dev Set and the Eval Set. Audios are sampled
from 11 different domains with 16k sample rate, the number
of speakers in each recording widely varies from 1 to 10. For
vector-to-sequence scoring models, similarity matrices larger
than the size of 400×400 are partitioned into submatrices and
constructed accordingly.

4.3. Evaluation Metrics

We take the diarization error rate (DER) as the main metric,
which consists of miss detection, false alarm and speaker error.
There is no collar tolerance around speech turns, and miss de-
tection of speakers in overlapped speech accounts for the error.

Another metric, namely Jaccard error rate (JER), is newly
developed by the DIHARD competition [28]. It computes the
sum of false alarm and miss detection for each individual in
the audio, and then average the errors. Speakers with different
duration contribute equally to the new metric.

4.4. Model configuration

In the Att-v2s model, the first linear layer is 256-dimensional.
The encoder layer contains 2 heads with 128 attention units for
each head, and the dimension of the feed-forward layer is 1024.
The second linear is 1-dimensional, connected with the Sigmoid
function. In the Att-s2s model, the same configuration is em-
ployed, except that we replace the second linear layer by matrix
production ZPZ�. Matrix P is the size of 256× 256.

The binary cross entropy (BCE) loss function computes the
loss between the similarity matrix and the ground truth adja-
cent matrix with binary values. The stochastic gradient descent
(SGD) optimizer is employed, with the learning rate initialized
as 0.01 and decreasing twice to 0.0001. The training process ter-
minates after 100 epochs and we carry out evaluation on both
Dev and Eval Sets (Dev/Eval in Table 2). Moreover, we fix
the learning rate as 0.0001 and take the Dev Set to finetune the
model for 30 more epochs. Then the adapted model is evaluated
on the Eval Set (Eval + adaptation in Table 2).

4.5. Results

The spectral clustering algorithm is employed on top of similar-
ity matrices to generate diarization outputs. Besides, we con-
sider Variational Bayes (VB) resegmentation for enhancement
of system performance. Results are reported in Table 2. All

three neural network based models show significant improve-
ment on both Dev and Eval Sets in comparison with PLDA.
The best-performing single system, Att-v2s, achieves a DER of
18.44% on the Eval Set after domain adaptation and VB reseg-
mentation, almost the same as that of the DIHARD II winner
system. It is worth noting that the winner system includes an
additional overlap detection module, which slightly reduces the
error rate.

In most of the cases, both LSTM and Att-v2s models out-
perform the Att-s2s model. It is reasonable because the Att-s2s
model constructs the whole similarity matrix in one shot, and
the information it has to express is far more complicated than
that of two vector-to-sequence models. As a compensation, the
Att-s2s model runs in higher efficiency. It takes only 24 seconds
to score the Eval Set on a single core of Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz, while the rest two models cost more
than one hour.

Another interesting phenomenon is that the Att-s2s model
gains the lowest JER on the Eval Set after domain adaptation,
but meanwhile its DER is highest among the three models.
Since speakers with different duration in the audio contribute
equally to JER, even miss detection of the least talkative speaker
raises a high error. We believe that JER is not as stable as DER,
and thus report DER as the main metric.

5. Conclusions

In this paper, we review the LSTM based scoring model and
propose two new methods with the self-attention mechanism.
The first approach Att-v2s works in a vector-to-sequence man-
ner, and achieves 18.44% DER on the DIHARD II Eval Set af-
ter domain adaptation and resegmentation. Besides, our second
approach Att-s2s works in a sequence-to-sequence manner and
operates with higher efficiency and comparable performance.
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