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Abstract 

Recently, speaker diarization based on speaker embeddings has 
shown excellent results in many works. In this paper we 
propose several enhancements throughout the diarization 
pipeline. This work addresses two clustering frameworks: 
agglomerative hierarchical clustering (AHC) and spectral 
clustering (SC). 

First, we use multiple speaker embeddings. We show that 
fusion of x-vectors and d-vectors boosts accuracy significantly.   
Second, we train neural networks to leverage both acoustic and 
duration information for scoring similarity of segments or 
clusters. Third, we introduce a novel method to guide the AHC 
clustering mechanism using a neural network. Fourth, we 
handle short duration segments in SC by deemphasizing their 
effect on setting the number of speakers. 

Finally, we propose a novel method for estimating the 
number of clusters in the SC framework. The method takes each 
eigenvalue and analyzes the projections of the SC similarity 
matrix on the corresponding eigenvector. 

We evaluated our system on NIST SRE 2000 CALLHOME 
and, using cross-validation, we achieved an error rate of 5.1%, 
going beyond state-of-the-art speaker diarization.   

Index Terms: speaker diarization, agglomerative hierarchical 
clustering, spectral clustering, uncertainty modeling, short 
utterances, number of clusters estimation 

1. Introduction 

Speaker diarization is the process of partitioning an input audio 
stream into clusters of segments according to speaker identity 
(“who spoke when”). Speaker diarization systems often consist 
of the following components: speech segmentation, speech 
embedding and clustering. 

In the speech segmentation component, voice activity 
detection (VAD) is usually employed to remove the non-speech 
part. Each resulting segment may be further divided into 
smaller segments using any method that ensures that only a 
single speaker exists in most segments. 

The speech embedding component extracts segment-based 
features such as i-vectors [1] or x-vectors [2]. The features are 
used to score the similarity of pairs of segments or pairs of 
clusters. 

The clustering component groups the segments into 
hypothesized speakers, using a similarity scoring function 
defined on the extracted embeddings. One popular clustering 
scheme is Agglomerative Hierarchical Clustering (AHC) [3] 
which is a bottom-up approach, and a second popular clustering 
method is Spectral clustering (SC) [4]. 

In this work we address several components of the 
diarization pipeline. For the speech embedding component, we 
propose a fusion of multiple embeddings, namely, fusion of x-
vectors and d-vectors [5]. 

 For the similarity scoring of clusters which is fundamental 
in AHC, and for similarity scoring of segments which is key in 
SC, we propose training neural networks that integrate both 
acoustic similarity and duration information that indicates 
uncertainty in embeddings due to short durations.  

Finally, we propose a novel approach to estimate the 
number of clusters. For each eigenvalue, we analyzre the 
temporal responses of the corresponding eigenvector on the SC 
similarity matrix.  

The rest of the paper is organized as follows. Section 2 
describes our baseline systems. Section 3 describes our 
contribution in the speech embedding component. Section 4 
describes our contributions in similarity scoring. Section 5 
introduces our contributions in the clustering component. 
Section 6 reports the experiments and results. Finally, Section 
7 concludes the paper. 

2. Baseline Systems 

We consider two baseline systems, where both systems share 
the speech segmentation and speech embedding components, 
and differ only in the clustering component.  

The first baseline system is based on AHC and the second 
is based on SC. We first describe the two shared components. 
Next, we describe the AHC-based system and the SC-based 
system. 

2.1. Speech Segmentation 

Our deployed system uses automatic speech recognition (ASR) 
to perform speech segmentation [6]. The benefits of using ASR 
are twofold. First, ASR can accurately remove the non-speech 
part.  Second, the speaker diarization  output is fully aligned with 
the ASR output. Because we wanted to compare our method to 
other works, we used in this work Oracle VAD to filter non-
speech and create evenly-spaced overlapping segments of size 
2.4s with 50% overlap, as done in [5]. 
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2.2. Speech embedding 

We use x-vectors as the baseline embeddings. These x-vectors 
are currently the most widely used method for deep learning-
based speaker embedding. The x-vector architecture feeds a 
stack of Mel-frequency cepstral coefficients (MFCC) frames 
into a time-delay neural network (TDNN). The first layers are 
TDNN, followed by a time-pooling layer which accumulates 
statistics on the time frame-based mean and standard deviation 
of the segment. On top of the pooling layer, a single x-vector  
segment-level embedding is trained discriminatively on speaker 
labels. A detailed description can be found in [2].  

2.3. AHC-based clustering 

AHC starts by assigning each segment into a unique cluster. 
Then, in each iteration, AHC finds the most similar pair of 
clusters and merges them into a single cluster. The process stops 
according to a predefined threshold on the cluster pair 
similarity. 

Our implementation starts with a pre-processing step of unit 
length normalization of the embeddings followed by removal 
of the session-dependent embedding mean. We then apply 
session-dependent principal component analysis (PCA) [7, 8] 
in the embedding space to further enhance speaker separability 
and deemphasize within-speaker variability (we expect only the 
top eigenvectors to account for speaker information). 

Pairwise dot products are then computed on the 
dimensionality reduced embeddings. In each iteration AHC 
finds the most similar pair of clusters according to the dot 
product, and merges them together. When merging clusters a 
and b into a merged cluster x, we simply average our estimates 
on pairwise dot products. For any cluster c: 

 
                        𝑐 · 𝑥 ∶= (𝑐 · 𝑎 + 𝑐 · 𝑏)                         (1) 

 
A more detailed description of our implementation is 

reported in [6, 3, 9].    

2.4. SC-based clustering 

Our SC-based system is inspired by the system described in [5]. 
Given n observed embedding vectors, spectral clustering is 
based on the similarity (also called affinity) matrix (n x n).  We 
conduct the following steps to estimate the number of clusters 
k:   

1. Compute 10 largest eigenvalues, λ1,…,λ10 of the 
similarity matrix 

2. Search for the number of clusters k in the range of  
[2, …, 10] 

3. Stop if the normalized eigengap   is below a 

threshold 
 

Given the estimated number of clusters k, we stack the top-
k eigenvectors into a n x k matrix and apply k-means on the n 
matrix rows. 

3. Multiple Speech Embeddings 

Our baseline systems use x-vectors for speech embedding, 
similar to other systems such as [10, 11]. In [5, 12] LSTM-based 
d-vectors proved their effectiveness for speaker diarization. In  

 
 

our diarization frameworks, we evaluated the fusion of x-
vectors and d-vectors. 

The d-vectors we use are different from Google’s d-vectors 
[5] in the following manner. First, we employ frame-stacking 
and frame-skipping for MFCC frames. Second, we applied 
additive angular margin (ArcFace) loss [13] to train the model.  
A detailed description of our d-vector extractor and training 
setup can be found in [12]. 

For multiple-embedding experiments, we concatenate the 
x-vector and d-vector embeddings, which was found to be 
comparable to fusion in the similarity score domain. 

4. Similarity Scoring with Neural 
Networks 

Our baseline similarity scoring function is the dot product, 
which is equivalent to the cosine similarity for unit length 
normalized vectors. For AHC, we investigated methods for 
learning a similarity function between clusters, while for SC, 
we investigated methods for learning a similarity function 
between segments. 

4.1. Cluster similarity for AHC 

The accuracy of AHC results is highly dependent on a high-
quality similarity function between pairs of clusters. We 
propose the following technique to augment the plain cosine 
similarity. We feed both the cosine similarity and the 
accumulated durations of both clusters into a neural network 
which is designed to estimate the utility of merging the two 
clusters into one. We name this architecture c-d-d (cosine-
duration-duration).  

Note, that a given cluster does not necessarily consist of a 
single speaker, because the clustering process is imperfect. 
Therefore, even given the ground truth speaker labels, the 
quality of a merge is not well defined. 

We feed the durations of the clusters to the network, to 
better handle small clusters. As shown recently [14] in the 
context of speaker change detection, embedding uncertainty 
due to short audio segments can be handled when segment 
durations are fed to a neural network jointly with the acoustic 
information. 

We use the architecture shown in Figure 1 to score the 
utility of merging a given cluster. During the clustering process, 
we find the top-N (N=100) pair candidates using the baseline 
scoring method (cosine similarity) and rescore the top-N pair 
candidates using the neural network.  

We train the neural network by running the AHC pipeline 
on speaker labeled training data. Given a clustering iteration, 
we collect the top-N scoring pairs and, for each one, create a 
training example for the neural network. The cosine similarity 
and cluster durations are trivially given.  

To set the target output of the neural network, we create for 
each cluster a histogram of the speakers that correspond to the 
cluster. For example, for a session with three labeled speakers, 
the histogram of a cluster contains three frequencies that 
correspond to the percentage of speech spoken by each of the 
three speakers in that cluster. We define the target output as the 
cosine similarity between the pair of associated histograms. 

We use the mean squared error loss function with the Adam 
optimizer to train the NN. 
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 Figure 1: Clusters-pair similarity scoring given cosine 

similarity (c) and clusters durations (d1, d2). Rectified linear 
units (ReLU) are used in all layers except for the last layer 
which uses a sigmoid. Network is named c-d-d. 

 

Figure 2: Segments-pair similarity scoring given embeddings 
(e1, e1) and segments durations (d1, d2). Rectified linear units 
(ReLU) are used in all layers except for the first dense layer for 
the embeddings input which is linear, and the last layer which 
uses a sigmoid. The embedding dimension is denoted by embed-
dim. The network is named e-e-d-d. 

4.2.  Segments similarity for SC 

A key component in SC is the ability to score the similarity of 
a pair of segments. We investigated two architectures.  

The first architecture is the c-d-d network described in the 
previous subsection, namely the cosine similarity and segments 
durations are fed to the network described in Figure 1. 

The second architecture is depicted in Figure 2. It combines 
the architecture from Figure 1 with a sub-network that replaces 
the cosine similarity input with a learnt similarity function that 
operates directly on the segment embeddings. We name this 
network e-e-d-d. The embedding-based learnt similarity 
function is a dot product between the outputs of a simple sub -
network that performs a linear transformation followed by unit 
length normalization. 

5. Estimating the number of speakers 

Estimating the number of clusters is a crucial step in SC. The 
large eigenvalues of the similarity matrix usually correspond to 
speakers, and the small eigenvalues correspond to within-
speaker variability (noise). However, in practice, it is often hard 
to find the right cutoff point, as there may be one or two 
borderline eigenvalues for which it is difficult to distinguish 
between an eigenvalue that corresponds to an actual speaker or 
corresponds to noise. In the following subsections we propose 
two methods for improving the estimation of the number of 
speakers 

5.1. Deemphasizing short segments  

Our goal is to deemphasize  the impact of short segments on the 
process of estimating the number of speakers in SC, since the 
embeddings extracted from them are less reliable. We do this 
by applying the following on the similarity matrix. We scale 

each off-diagonal element of the matrix by 
∙

, where di 

and dj are the durations of segments i and j respectively and 
max 𝑑  is the duration of the longest segment. 

5.2. Temporal responses analysis 

Ideally, it is expected that each top eigenvector of the similarity 
matrix corresponds to one or two speakers. Multiplying the 
similarity matrix with this eigenvector results in a vector we 
name the temporal response. Observing the absolute values of 
the components of the temporal response, we expect to get large 
values in coordinates corresponding to segments that belong to 
the speaker associated with the eigenvector. In case of two 
speakers associated to the eigenvector, one of the speakers will 
induce large positive values and the other will induce large 
negative values. 

In case of an eigenvector that is not associated to a speaker, 
we expect the temporal response to be noisy. 

We define an eigenvalue to be positive-dominant in 
segment j if the eigenvector has a positive projection on row j 
of the similarity matrix and the magnitude of the projection is 
maximal with respect to the magnitudes of the projections of 
other eigenvalues on row j. We define the term negative-
dominant correspondingly. 

For every speaker in the session, we expect to have an 
eigenvalue that is either positive-dominant or negative-
dominant in all the rows that correspond to the speaker. 

Therefore, for every eigenvalue we count separately the 
number of positive-dominant rows and negative-dominant rows 
and compare each one of them to a threshold (minimal number 
of segments). Each such count that exceeds the threshold 
accounts for a newly detected speaker.  

The outline of our proposed method is as follows. k is the 
number of eigenvalues (10 in our setup). 

1. Compute the temporal response matrix R: R=AE 
where A is the n x n similarity matrix and E is a n x k 
matrix stacking k top eigenvectors 

2. Clear counter cr for r=1,…,2k 
3. For each row i 

a) Find maximal absolute value in row i in R → with 
index j 

b) If Ri,j>0 increase counter cj, otherwise increase cj+k 
4. Count the number of counters cr that exceed a 

threshold → Estimated number of speakers 
 

6. Experiments 

6.1. Embedding extractors 

We adopt the publicly available x-vector extractor [15] for our 
experiments. This TDNN based x-vector was trained for the 
speaker diarization task based on an augmented Switchboard 
and NIST SREs. 
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skipping to input MFCCs. A mean pooling over time was 
applied to the hidden states of the final LSTM layer followed 
by a single linear layer to form 64-dimensional d-vectors. Full 
details on the training scheme can be found in [12]. 

6.2. Speaker diarization dataset 

We used the NIST SRE 2000 CALLHOME dataset for our 
evaluation. The dataset contains 500 utterances in total, in 6 
languages: English, Chinese, Japanese, Arabic, German, and 
Spanish. The number of speakers in the recordings, ranges from 
2 to 7 speakers.  

For training the systems, we use 5-fold cross validation as 
done in other works. 

6.3. Experimental setup 

We follow the common practice of using Oracle VAD to filter 
non-speech and create evenly spaced overlapping segments of 
size 2.4s with 50% overlap. We used the standard forgiveness 
collar of 0.25s and report diarization error rates (DER). 

6.4. Deemphasis of short segments for SC 

Table 1 reports our experiments with deemphasizing short 
segments (Subsection 5.1) under the SC framework with the x-
vector based baseline system. The results indicate a relative 
error reduction of 7%. The rest our SC-based experiments that 
are reported in Table 3 use this technique. 

6.5. Multiple speech embeddings 

Results for using x-vectors, d-vectors and the concatenation of 
both embeddings are reported in Tables 1 and 2 for AHC and 
SC respectively. Relative error reduction for using the 
concatenation compared to using x-vectors only is 4% for AHC 
and 25% for SC. 

6.6. Similarity scoring with neural networks 

The c-d-d architecture was evaluated for AHC and SC. The 
results indicate a 6% relative error reduction (compared to the 
cosine similarity) for AHC (Table 2), and 8% for SC (Table 3). 

The e-e-d-d architecture was evaluated for SC. The result 
which is reported in Table 3 indicates a 12% relative error 
reduction compared to the cosine similarity. 

6.7. Temporal responses analysis 

In order to improve the estimate of the number of speakers in 
SC, we fuse two estimates by averaging them. The first estimate 
is the baseline normalized eigengap-based method. The second 
estimate is based on the temporal response analysis (Subsection 
5.2). 

In case of a non-integer average, the estimate is rounded 
towards the baseline estimate. The result is presented in Table 
3 and indicates a 4% relative error reduction compared to using 
only the baseline estimate. 

 

 
 

 

  
1 not comparable due to use of VAD (not Oracle) 

Table 1. DER results for the SC-based baseline system: 
analysis of the effect of short segments deemphasis 

Method DER 
No deemphasis of short segments  8.6 

With deemphasis of short segments  8.0 

Table 2. DER results for the AHC-based system 

Method DER 
x-vectors 8.4 
d-vectors 9.4 

x-vectors + d-vectors  8.1 
x+d-vectors + DNN c-d-d 7.6 

Table 3. DER results for the SC-based system. All 
experiments include deemphasis of short segments 

Method DER 
x-vectors 8.0 
d-vectors 7.9 

x-vectors + d-vectors 6.0 
x+d-vectors + DNN c-d-d  5.5 

x+d-vectors + DNN e-e-d-d 5.3 
x+d-vectors + DNN e-e-d-d + Temporal analysis  5.1 

Table 4. DER results for recent works on NIST-2000 
CALLHOME 

Work DER 
Diaez et al. [16] 9.0 

Zhang et al [17] 1 7.6 
Mcree et al. [18] 7.1 

Liu et al. [19] 6.6 
Huang et al. [20] 6.5 

 

7. Conclusions 

In this work we address two popular speaker diarization 
schemes: agglomerative hierarchical clustering (AHC) and 
spectral clustering (SC). We propose several general advances 
that are applicable to both schemes, and some advances that are 
applicable to only one of them. 

First, we use multiple speaker embeddings. We show that 
fusion of x-vectors and d-vectors boosts accuracy significantly. 

Second, we train neural networks to leverage both acoustic and 
duration information for scoring similarity of segments or 
clusters. Third, we handle short duration segments in SC by 
deemphasizing their effect on setting the number of speakers. 

Finally, we propose a novel method for estimating the 
number of clusters in the SC framework. The method takes each 
eigenvalue and analyzes the temporal responses of the 
corresponding eigenvector on the SC similarity matrix. 

We evaluated our system on NIST SRE 2000 CALLHOME 
and, using cross-validation, we achieved a DER of 5.1% with 
the SC-based system, compared to the 8.6% baseline (41% 
relative error reduction), going beyond state-of-the-art speaker 
diarization (see Table 4).  
 
  

The d-vector extractor is a 2-layer LSTM network with 768 
hidden nodes. We applied 8 frame-stacking and 8 frame-
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