
New Advances in Speaker Diarization

Hagai Aronowitz1, Weizhong Zhu2, Masayuki Suzuki3, Gakuto Kurata3, Ron Hoory1

1IBM Research AI, Haifa, Israel
2IBM Research AI, Yorktown Heights, New York, USA

3IBM Research AI, Tokyo, Japan

{hagai@il, zhuwe@us, szuk@jp, gakuto@jp, hoory@il}.ibm.com

Abstract

Recently, speaker diarization based on speaker embeddings has
shown excellent results in many works. In this paper we
propose several enhancements throughout the diarization
pipeline. This work addresses two clustering frameworks:
agglomerative hierarchical clustering (AHC) and spectral
clustering (SC).

First, we use multiple speaker embeddings. We show that
fusion of x-vectors and d-vectors boosts accuracy significantly.
Second, we train neural networks to leverage both acoustic and
duration information for scoring similarity of segments or
clusters. Third, we introduce a novel method to guide the AHC
clustering mechanism using a neural network. Fourth, we
handle short duration segments in SC by deemphasizing their
effect on setting the number of speakers.

Finally, we propose a novel method for estimating the
number of clusters in the SC framework. The method takes each
eigenvalue and analyzes the projections of the SC similarity
matrix on the corresponding eigenvector.

We evaluated our system on NIST SRE 2000 CALLHOME
and, using cross-validation, we achieved an error rate of 5.1%,
going beyond state-of-the-art speaker diarization.

Index Terms: speaker diarization, agglomerative hierarchical
clustering, spectral clustering, uncertainty modeling, short
utterances, number of clusters estimation

1. Introduction

Speaker diarization is the process of partitioning an input audio
stream into clusters of segments according to speaker identity
(“who spoke when”). Speaker diarization systems often consist
of the following components: speech segmentation, speech
embedding and clustering.

In the speech segmentation component, voice activity
detection (VAD) is usually employed to remove the non-speech
part. Each resulting segment may be further divided into
smaller segments using any method that ensures that only a
single speaker exists in most segments.

The speech embedding component extracts segment-based
features such as i-vectors [1] or x-vectors [2]. The features are
used to score the similarity of pairs of segments or pairs of
clusters.

The clustering component groups the segments into
hypothesized speakers, using a similarity scoring function
defined on the extracted embeddings. One popular clustering
scheme is Agglomerative Hierarchical Clustering (AHC) [3]
which is a bottom-up approach, and a second popular clustering
method is Spectral clustering (SC) [4].

In this work we address several components of the
diarization pipeline. For the speech embedding component, we
propose a fusion of multiple embeddings, namely, fusion of x-
vectors and d-vectors [5].

 For the similarity scoring of clusters which is fundamental
in AHC, and for similarity scoring of segments which is key in
SC, we propose training neural networks that integrate both
acoustic similarity and duration information that indicates
uncertainty in embeddings due to short durations.

Finally, we propose a novel approach to estimate the
number of clusters. For each eigenvalue, we analyzre the
temporal responses of the corresponding eigenvector on the SC
similarity matrix.

The rest of the paper is organized as follows. Section 2
describes our baseline systems. Section 3 describes our
contribution in the speech embedding component. Section 4
describes our contributions in similarity scoring. Section 5
introduces our contributions in the clustering component.
Section 6 reports the experiments and results. Finally, Section
7 concludes the paper.

2. Baseline Systems

We consider two baseline systems, where both systems share
the speech segmentation and speech embedding components,
and differ only in the clustering component.

The first baseline system is based on AHC and the second
is based on SC. We first describe the two shared components.
Next, we describe the AHC-based system and the SC-based
system.

2.1. Speech Segmentation

Our deployed system uses automatic speech recognition (ASR)
to perform speech segmentation [6]. The benefits of using ASR
are twofold. First, ASR can accurately remove the non-speech
part. Second, the speaker diarization output is fully aligned with
the ASR output. Because we wanted to compare our method to
other works, we used in this work Oracle VAD to filter non-
speech and create evenly-spaced overlapping segments of size
2.4s with 50% overlap, as done in [5].

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-1879279

2.2. Speech embedding

We use x-vectors as the baseline embeddings. These x-vectors
are currently the most widely used method for deep learning-
based speaker embedding. The x-vector architecture feeds a
stack of Mel-frequency cepstral coefficients (MFCC) frames
into a time-delay neural network (TDNN). The first layers are
TDNN, followed by a time-pooling layer which accumulates
statistics on the time frame-based mean and standard deviation
of the segment. On top of the pooling layer, a single x-vector
segment-level embedding is trained discriminatively on speaker
labels. A detailed description can be found in [2].

2.3. AHC-based clustering

AHC starts by assigning each segment into a unique cluster.
Then, in each iteration, AHC finds the most similar pair of
clusters and merges them into a single cluster. The process stops
according to a predefined threshold on the cluster pair
similarity.

Our implementation starts with a pre-processing step of unit
length normalization of the embeddings followed by removal
of the session-dependent embedding mean. We then apply
session-dependent principal component analysis (PCA) [7, 8]
in the embedding space to further enhance speaker separability
and deemphasize within-speaker variability (we expect only the
top eigenvectors to account for speaker information).

Pairwise dot products are then computed on the
dimensionality reduced embeddings. In each iteration AHC
finds the most similar pair of clusters according to the dot
product, and merges them together. When merging clusters a
and b into a merged cluster x, we simply average our estimates
on pairwise dot products. For any cluster c:

 𝑐 · 𝑥 ∶= (𝑐 · 𝑎 + 𝑐 · 𝑏) (1)

A more detailed description of our implementation is

reported in [6, 3, 9].

2.4. SC-based clustering

Our SC-based system is inspired by the system described in [5].
Given n observed embedding vectors, spectral clustering is
based on the similarity (also called affinity) matrix (n x n). We
conduct the following steps to estimate the number of clusters
k:

1. Compute 10 largest eigenvalues, λ1,…,λ10 of the
similarity matrix

2. Search for the number of clusters k in the range of
[2, …, 10]

3. Stop if the normalized eigengap is below a

threshold

Given the estimated number of clusters k, we stack the top-
k eigenvectors into a n x k matrix and apply k-means on the n
matrix rows.

3. Multiple Speech Embeddings

Our baseline systems use x-vectors for speech embedding,
similar to other systems such as [10, 11]. In [5, 12] LSTM-based
d-vectors proved their effectiveness for speaker diarization. In

our diarization frameworks, we evaluated the fusion of x-
vectors and d-vectors.

The d-vectors we use are different from Google’s d-vectors
[5] in the following manner. First, we employ frame-stacking
and frame-skipping for MFCC frames. Second, we applied
additive angular margin (ArcFace) loss [13] to train the model.
A detailed description of our d-vector extractor and training
setup can be found in [12].

For multiple-embedding experiments, we concatenate the
x-vector and d-vector embeddings, which was found to be
comparable to fusion in the similarity score domain.

4. Similarity Scoring with Neural
Networks

Our baseline similarity scoring function is the dot product,
which is equivalent to the cosine similarity for unit length
normalized vectors. For AHC, we investigated methods for
learning a similarity function between clusters, while for SC,
we investigated methods for learning a similarity function
between segments.

4.1. Cluster similarity for AHC

The accuracy of AHC results is highly dependent on a high-
quality similarity function between pairs of clusters. We
propose the following technique to augment the plain cosine
similarity. We feed both the cosine similarity and the
accumulated durations of both clusters into a neural network
which is designed to estimate the utility of merging the two
clusters into one. We name this architecture c-d-d (cosine-
duration-duration).

Note, that a given cluster does not necessarily consist of a
single speaker, because the clustering process is imperfect.
Therefore, even given the ground truth speaker labels, the
quality of a merge is not well defined.

We feed the durations of the clusters to the network, to
better handle small clusters. As shown recently [14] in the
context of speaker change detection, embedding uncertainty
due to short audio segments can be handled when segment
durations are fed to a neural network jointly with the acoustic
information.

We use the architecture shown in Figure 1 to score the
utility of merging a given cluster. During the clustering process,
we find the top-N (N=100) pair candidates using the baseline
scoring method (cosine similarity) and rescore the top-N pair
candidates using the neural network.

We train the neural network by running the AHC pipeline
on speaker labeled training data. Given a clustering iteration,
we collect the top-N scoring pairs and, for each one, create a
training example for the neural network. The cosine similarity
and cluster durations are trivially given.

To set the target output of the neural network, we create for
each cluster a histogram of the speakers that correspond to the
cluster. For example, for a session with three labeled speakers,
the histogram of a cluster contains three frequencies that
correspond to the percentage of speech spoken by each of the
three speakers in that cluster. We define the target output as the
cosine similarity between the pair of associated histograms.

We use the mean squared error loss function with the Adam
optimizer to train the NN.

280

 Figure 1: Clusters-pair similarity scoring given cosine

similarity (c) and clusters durations (d1, d2). Rectified linear
units (ReLU) are used in all layers except for the last layer
which uses a sigmoid. Network is named c-d-d.

Figure 2: Segments-pair similarity scoring given embeddings
(e1, e1) and segments durations (d1, d2). Rectified linear units
(ReLU) are used in all layers except for the first dense layer for
the embeddings input which is linear, and the last layer which
uses a sigmoid. The embedding dimension is denoted by embed-
dim. The network is named e-e-d-d.

4.2. Segments similarity for SC

A key component in SC is the ability to score the similarity of
a pair of segments. We investigated two architectures.

The first architecture is the c-d-d network described in the
previous subsection, namely the cosine similarity and segments
durations are fed to the network described in Figure 1.

The second architecture is depicted in Figure 2. It combines
the architecture from Figure 1 with a sub-network that replaces
the cosine similarity input with a learnt similarity function that
operates directly on the segment embeddings. We name this
network e-e-d-d. The embedding-based learnt similarity
function is a dot product between the outputs of a simple sub -
network that performs a linear transformation followed by unit
length normalization.

5. Estimating the number of speakers

Estimating the number of clusters is a crucial step in SC. The
large eigenvalues of the similarity matrix usually correspond to
speakers, and the small eigenvalues correspond to within-
speaker variability (noise). However, in practice, it is often hard
to find the right cutoff point, as there may be one or two
borderline eigenvalues for which it is difficult to distinguish
between an eigenvalue that corresponds to an actual speaker or
corresponds to noise. In the following subsections we propose
two methods for improving the estimation of the number of
speakers

5.1. Deemphasizing short segments

Our goal is to deemphasize the impact of short segments on the
process of estimating the number of speakers in SC, since the
embeddings extracted from them are less reliable. We do this
by applying the following on the similarity matrix. We scale

each off-diagonal element of the matrix by
∙

, where di

and dj are the durations of segments i and j respectively and
max 𝑑 is the duration of the longest segment.

5.2. Temporal responses analysis

Ideally, it is expected that each top eigenvector of the similarity
matrix corresponds to one or two speakers. Multiplying the
similarity matrix with this eigenvector results in a vector we
name the temporal response. Observing the absolute values of
the components of the temporal response, we expect to get large
values in coordinates corresponding to segments that belong to
the speaker associated with the eigenvector. In case of two
speakers associated to the eigenvector, one of the speakers will
induce large positive values and the other will induce large
negative values.

In case of an eigenvector that is not associated to a speaker,
we expect the temporal response to be noisy.

We define an eigenvalue to be positive-dominant in
segment j if the eigenvector has a positive projection on row j
of the similarity matrix and the magnitude of the projection is
maximal with respect to the magnitudes of the projections of
other eigenvalues on row j. We define the term negative-
dominant correspondingly.

For every speaker in the session, we expect to have an
eigenvalue that is either positive-dominant or negative-
dominant in all the rows that correspond to the speaker.

Therefore, for every eigenvalue we count separately the
number of positive-dominant rows and negative-dominant rows
and compare each one of them to a threshold (minimal number
of segments). Each such count that exceeds the threshold
accounts for a newly detected speaker.

The outline of our proposed method is as follows. k is the
number of eigenvalues (10 in our setup).

1. Compute the temporal response matrix R: R=AE
where A is the n x n similarity matrix and E is a n x k
matrix stacking k top eigenvectors

2. Clear counter cr for r=1,…,2k
3. For each row i

a) Find maximal absolute value in row i in R → with
index j

b) If Ri,j>0 increase counter cj, otherwise increase cj+k
4. Count the number of counters cr that exceed a

threshold → Estimated number of speakers

6. Experiments

6.1. Embedding extractors

We adopt the publicly available x-vector extractor [15] for our
experiments. This TDNN based x-vector was trained for the
speaker diarization task based on an augmented Switchboard
and NIST SREs.

281

skipping to input MFCCs. A mean pooling over time was
applied to the hidden states of the final LSTM layer followed
by a single linear layer to form 64-dimensional d-vectors. Full
details on the training scheme can be found in [12].

6.2. Speaker diarization dataset

We used the NIST SRE 2000 CALLHOME dataset for our
evaluation. The dataset contains 500 utterances in total, in 6
languages: English, Chinese, Japanese, Arabic, German, and
Spanish. The number of speakers in the recordings, ranges from
2 to 7 speakers.

For training the systems, we use 5-fold cross validation as
done in other works.

6.3. Experimental setup

We follow the common practice of using Oracle VAD to filter
non-speech and create evenly spaced overlapping segments of
size 2.4s with 50% overlap. We used the standard forgiveness
collar of 0.25s and report diarization error rates (DER).

6.4. Deemphasis of short segments for SC

Table 1 reports our experiments with deemphasizing short
segments (Subsection 5.1) under the SC framework with the x-
vector based baseline system. The results indicate a relative
error reduction of 7%. The rest our SC-based experiments that
are reported in Table 3 use this technique.

6.5. Multiple speech embeddings

Results for using x-vectors, d-vectors and the concatenation of
both embeddings are reported in Tables 1 and 2 for AHC and
SC respectively. Relative error reduction for using the
concatenation compared to using x-vectors only is 4% for AHC
and 25% for SC.

6.6. Similarity scoring with neural networks

The c-d-d architecture was evaluated for AHC and SC. The
results indicate a 6% relative error reduction (compared to the
cosine similarity) for AHC (Table 2), and 8% for SC (Table 3).

The e-e-d-d architecture was evaluated for SC. The result
which is reported in Table 3 indicates a 12% relative error
reduction compared to the cosine similarity.

6.7. Temporal responses analysis

In order to improve the estimate of the number of speakers in
SC, we fuse two estimates by averaging them. The first estimate
is the baseline normalized eigengap-based method. The second
estimate is based on the temporal response analysis (Subsection
5.2).

In case of a non-integer average, the estimate is rounded
towards the baseline estimate. The result is presented in Table
3 and indicates a 4% relative error reduction compared to using
only the baseline estimate.

1 not comparable due to use of VAD (not Oracle)

Table 1. DER results for the SC-based baseline system:
analysis of the effect of short segments deemphasis

Method DER
No deemphasis of short segments 8.6

With deemphasis of short segments 8.0

Table 2. DER results for the AHC-based system

Method DER
x-vectors 8.4
d-vectors 9.4

x-vectors + d-vectors 8.1
x+d-vectors + DNN c-d-d 7.6

Table 3. DER results for the SC-based system. All
experiments include deemphasis of short segments

Method DER
x-vectors 8.0
d-vectors 7.9

x-vectors + d-vectors 6.0
x+d-vectors + DNN c-d-d 5.5

x+d-vectors + DNN e-e-d-d 5.3
x+d-vectors + DNN e-e-d-d + Temporal analysis 5.1

Table 4. DER results for recent works on NIST-2000
CALLHOME

Work DER
Diaez et al. [16] 9.0

Zhang et al [17] 1 7.6
Mcree et al. [18] 7.1

Liu et al. [19] 6.6
Huang et al. [20] 6.5

7. Conclusions

In this work we address two popular speaker diarization
schemes: agglomerative hierarchical clustering (AHC) and
spectral clustering (SC). We propose several general advances
that are applicable to both schemes, and some advances that are
applicable to only one of them.

First, we use multiple speaker embeddings. We show that
fusion of x-vectors and d-vectors boosts accuracy significantly.

Second, we train neural networks to leverage both acoustic and
duration information for scoring similarity of segments or
clusters. Third, we handle short duration segments in SC by
deemphasizing their effect on setting the number of speakers.

Finally, we propose a novel method for estimating the
number of clusters in the SC framework. The method takes each
eigenvalue and analyzes the temporal responses of the
corresponding eigenvector on the SC similarity matrix.

We evaluated our system on NIST SRE 2000 CALLHOME
and, using cross-validation, we achieved a DER of 5.1% with
the SC-based system, compared to the 8.6% baseline (41%
relative error reduction), going beyond state-of-the-art speaker
diarization (see Table 4).

The d-vector extractor is a 2-layer LSTM network with 768
hidden nodes. We applied 8 frame-stacking and 8 frame-

282

8. References

[1] N. Dehak et al., “Front-end factor analysis for speaker
verification, in IEEE Transitions on Audio, Speech, and
Language Processing, 2011.

[2] D. Garcia-Romero et al., “Speaker diarization using deep neural
networks embeddings.”, in IEEE International conference on
Acoustics, Speech, and Language Processing, 2017.

[3] W. Zhu and J. Pelecanos., “Online speaker diarization using
adapted i-vector transform” in IEEE International conference on
Acoustics, Speech, and Language Processing, 2016.

[4] A.Y. Ng, M. I. Jordan and Y. Weiss, "On spectral clustering:
analysis and an algorithm", in Advances in Neural Information
Processing Systems, 2002.

[5] Q. Wang, C. Downey, L. Wan, P. A. Mansfield and I. L. Moreno,
“Speaker Diarization with LSTM”, in Proc. ICASSP, 2018.

[6] D. Dimitriadis and P. Fousek, “Developing on-line speaker
diarization system” in InterSpeech, 2017.

[7] H. Aronowitz, "Unsupervised Compensation of Intra-Session
Intra-Speaker Variability for Speaker Diarization", in Proc.
Speaker Odyssey, 2010.

[8] S.H. Shum et al., “Unsupervised method for speaker diarization”
An integrated and iterative approach,” in IEEE Transitions on
Audio, Speech, and Language Processing, 2013.

[9] K. Church et al., “Speaker diarization: perspective on challenges
and opportunities from the theory to practice,” in IEEE
International conference on Acoustics, Speech, and Language
Processing, 2017.

[10] G. Sell et al., “Diarization is Hard: Some Experiences and Lessons
Learned for the JHU team in the Inaugural DIHARD Challenge”,
in Proc. Interspeech, 2018.

[11] M. Diez et al., “Bayesian HMM based x-vector clustering for
Speaker Diarization”, in Proc. Interspeech, 2019.

[12] Y. Higuchi, M. Suzuki, and G. Kurata, “Speaker embeddings
incorporating acoustic conditions for diarization,” in Proc.
ICASSP, 2020.

[13] J. Deng, J. Guo, N. Xue and S. Zafeiriou, "ArcFace: Additive
Angular Margin Loss for Deep Face Recognition,” in Proc.
CVPR, 2009.

[14] H. Aronowitz, W. Zhu, “Context and Uncertainty Modeling for
Speaker Change Detection”, in Proc. ICASSP, 2020.

[15] https://kaldi-asr.org/models/m6
[16] M. Diez et al., “Speaker diarization based on Bayesian HMM with

eigenvoice priors”, in Proceedings of Odyssey, 2018.
[17] A. Zhang et al., “Fully supervised speaker diarization,” in Proc.

ICASSP, 2019.
[18] A. McCree at el., “Speaker Diarization using leave-one-out

Guassian PLDA clustering of DNN embeddings”, in Proc.
InterSpeech, 2019.

[19] Q. Lin et al., “LSTM based similarity measurement with spectral
clustering for speaker diarization”, in Proc. Interspeech, 2019.

[20] Z. Huang, S. Watanabe, Y. Fujita, P. García, Y. Shao, D. Povey,
and S. Khudanpur, “Speaker Diarization with Region Proposal
Network”, (2020), ArXiv, abs/2002.06220.

283

