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Abstract
Speaker diarization for real-life scenarios is an extremely chal-
lenging problem. Widely used clustering-based diarization ap-
proaches perform rather poorly in such conditions, mainly due
to the limited ability to handle overlapping speech. We propose
a novel Target-Speaker Voice Activity Detection (TS-VAD) ap-
proach, which directly predicts an activity of each speaker on
each time frame. TS-VAD model takes conventional speech
features (e.g., MFCC) along with i-vectors for each speaker as
inputs. A set of binary classification output layers produces ac-
tivities of each speaker. I-vectors can be estimated iteratively,
starting with a strong clustering-based diarization.

We also extend the TS-VAD approach to the multi-
microphone case using a simple attention mechanism on top of
hidden representations extracted from the single-channel TS-
VAD model. Moreover, post-processing strategies for the pre-
dicted speaker activity probabilities are investigated. Experi-
ments on the CHiME-6 unsegmented data show that TS-VAD
achieves state-of-the-art results outperforming the baseline x-
vector-based system by more than 30% Diarization Error Rate
(DER) abs.
Index Terms: speaker diarization, TS-VAD, CHiME-6

1. Introduction
Diarization is a process of determining boundaries of utterances
for each speaker in a conversation. Diarization is an impor-
tant part of many applications, primarily of automatic speech
recognition (ASR), e.g., for meeting minutes creation. A con-
ventional approach [1, 2] consists of several stages, namely
speech/voice activity detection (SAD/VAD), segmentation of
the detected speech into short subsegments, and extraction of
the current speaker’s features (i-vectors [3], d-vectors [4, 5], x-
vectors[6] etc.) followed by clustering (k-means [7], agglom-
erative hierarchical [8], spectral [9], etc.) according to some
similarity metrics (Probabilistic Linear Discriminant Analy-
sis (PLDA) [10, 8] score, cosine, etc.). These stages can also be
followed by re-segmentation (such as GMM [11], Variational
Bayes [12] or LSTM-based [13]) and overlapping speech seg-
ments post-processing.

Currently, high diarization accuracy is achieved for many
benchmarks, such as CallHome. However, the development
of a diarization system for complex acoustic environments is
still an unsolved task. This was a motivation for the DIHARD
Challenges [14, 15] focused on the development of systems for
“hard” diarization. The DIHARD II Challenge [15] includes, in
particular, multichannel Tracks 3 and 4 based on the CHiME-5
Challenge [16] data, which are very hard for both diarization

and ASR. The same data diarization is also one of the CHiME-
6 Challenge [17] Track 2 tasks. This data recorded in real-life
conditions contains a large amount of overlapping speech. Con-
ventional diarization systems are not well-suited for processing
highly overlapping speech, so it is not very surprising that even
the best DIHARD II system developed by BUT [18] provided
DER only slightly below 60%.

During the participation in the CHiME-6 Challenge, we
were solving the same diarization problem [19]. Achieving high
diarization accuracy was crucial for high ASR performance,
which was the main challenge goal. So we started by review-
ing approaches that are effective in diarizing highly overlap-
ping speech. One of the most promising methods of such kind
is the end-to-end neural diarization (EEND) [20], which per-
forms diarization in a single stage and outputs the frame-level
activity probabilities for each speaker independently. Another
direction that we found to be promising consists of using pre-
computed features of a speaker of interest to draw the system’s
attention to only their speech. This direction is represented by
such approaches as Target-Speaker ASR [21], Speaker Beam
[22, 23] and Voice Filter [24] aimed at the target-speaker speech
extraction, etc. Moreover, the TS-ASR approach may be used
for simultaneous speech recognition and diarization [25]. One
more representative of this direction is the Personal VAD [26]
approach allowing to detect speech boundaries for only that
speaker whose acoustic “profile” is fed into the system.

Inspired by the the ideas mentioned above, we combined
their benefits in our own diarization approach for the CHiME-
6 referred to as Target-Speaker VAD (TS-VAD). In the course
of the development, our model evolved from the simple one,
very similar to the Personal VAD, to the sophisticated one,
which processes multi-channel recordings and outputs indepen-
dent speaker activity streams like the EEND model. The main
difficulty for the successful TS-VAD application is that, un-
like TS-ASR or Personal VAD scenarios, we do not have any
pre-computed speakers’ features and have to compute them di-
rectly from severely distorted and highly overlapping speech.
Nevertheless, we managed to find such a way of applying TS-
VAD which reduced DER to the values of 33% and 36% for the
CHiME-6 development and evaluation sets respectively, which
is much better than BUT system result for DIHARD II as well
as the CHiME-6 baseline result. Thus, although the direct com-
parison to the DIHARD II results may not be fully correct1, the
obtained results show the potential of our approach for diariza-
tion in CHiME-6-like scenarios. Our TS-VAD implementation
is available as a part of a new Kaldi recipe for CHiME-62.

1See Section 2 for the detailed explanation.
2https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5b track2
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The rest of the paper is organized as follows: in Section 2
we describe in more details the CHiME-6 Challenge conditions
and data, then in Section 3 we talk about how a single-channel
version of TS-VAD evolved and how the above-mentioned pro-
totypes influenced this process. The multi-channel TS-VAD
system is described in Section 4, and the fusion of different
systems as well as post-processing of diarization results are dis-
cussed in Section 5. Section 6 provides some conclusions and
suggests possible future directions.

2. CHiME-6 Challenge
The CHiME-6 Challenge continues a series of challenges on
speech recognition in complex real-life acoustic environments.
It is based on the same data as the previous CHiME-5, which
consists of multi-channel recordings from six 4-microphone
Microsoft Kinect arrays, located in three different rooms. Each
recording contains an informal conversation of four persons in
a dinner party scenario in three locations. Besides, the two-
channel recordings from in-ear microphone pairs worn by each
person are also provided for the training. Data includes 20
sessions (16 for training, 2 for development and 2 for evalu-
ation). The goal is to create ASR system for multi-channel
Kinect recordings in two tracks. In Track 1 participants are
allowed to use manual boundaries of each speaker’s utterances
created manually from worn microphones audio listening, while
in Track 2 this information can not be used. Since the knowl-
edge of boundaries can help to improve ASR substantially, one
of the Track 2 tasks is to obtain a high-quality diarization of
Kinect recordings. This task is very similar to Track 4 of the
DIHARD II Challenge. Same as in DIHARD II, the metrics
for this task are DER and Jaccard Error Rate (JER), which are
evaluated without using a collar and without excluding over-
lapping segments. Nonetheless, there are some differences, as
well. Firstly, CHiME-6 organizers provided software for time-
aligning different channels within a session, which was not
available in DIHARD II. All our results are obtained on pre-
aligned data. Also, unlike DIHARD II allowing participants to
use any training data, the CHiME-6 rules limit training data for
Track 2 by only CHiME-6 data and VoxCeleb data.

Initially, reference rttm-files provided by the CHiME-6
organizers were created based on utterance boundaries set
manually (the same information was used in Tracks 3-4 of
DIHARD II). However, such segmentation contains intra-
utterance pauses, which are treated as speech, and unlabelled
speakers’ introductions. Therefore, the organizers provided an-
other reference segmentation with the exclusion of silence seg-
ments. This was carried out using triphone GMM-HMM forced
alignment of reference transcripts over manual segments. Be-
sides, the UEM-file was provided, which makes it possible to
exclude speaker introductions from scoring. The significant dif-
ference between reference rttm files in CHiME-6 and DIHARD
II (about 30-40% in terms of DER) is the main reason why the
direct comparison of the results is not possible.

CHiME-6 data is rather noisy and reverberated as well as
contains a significant amount of overlapping speech, so it is dif-
ficult to perform an accurate diarization with clustering-based
systems. Statistics of overlapping speech in the development
and evaluation datasets is shown in Table 1. If one changes the
reference rttms to leave only a single speaker on each overlap-
ping segment, this will result in DER of 25.61%/21.76% (due
to the miss errors only) for the development and evaluation sets,
respectively. These values show the lowest achievable DERs
on the CHiME-6 data for clustering-based diarization systems
without special overlaps processing.

0 1 2 3 4

dev 24.05% 54.25% 17.74% 3.49% 0.47%
eval 33.47% 51.52% 12.03% 2.47% 0.51%

Table 1: Distribution of audio with respect to the number of
simultaneously speaking persons.

3. Single-channel TS-VAD
3.1. Single-Speaker model

Recently, a series of papers on multi-speaker speech process-
ing was published, where models focus on a specific speaker
ignoring the speech of others. These approaches include TS-
ASR [21] for target speech recognition, Speaker Beam [22, 23]
and Voice Filter [24] for target speech extraction, and Personal
VAD [26] for target speech detection. Most of them use the
acoustic footprint of a target speaker (usually i-vector), obtained
during prior enrollment, to focus on speech of interest. The Per-
sonal VAD model seemed to be most appropriate for our goals
since it selects each speaker’s speech independently. However,
this model was trained and tested on concatenated instead of
overlapped speech segments, so it was unclear if it could han-
dle overlapping speech as well. Besides, under the CHiME-6
conditions, it was not trivial how to compute i-vectors for each
speaker since the use of manual segmentation was prohibited in
test time.

Thus, we started with a purely research question: given
an i-vector estimated on manual non-overlapping speech seg-
ments of a target speaker, is it possible to detect their speech
in overlapping conditions? The answer was generally positive.
Our first single-speaker TS-VAD model was very similar to the
Personal VAD with the same three targets obtained from the
forced alignment, namely silence, target speech, and non-target
speech. The model architecture was a simple 3-layer BLSTM
with projections [27].

All the experiments were performed in the Kaldi ASR
Toolkit [28]. We used the acoustic model training dataset and
i-vector extractor from the Kaldi chime6 recipe. Moreover, we
used a “negative” version of each utterance with an i-vector cor-
responding to a random speaker from the same session and de-
vice (without such “negative” examples, the model tends to de-
tect any speech as a target). Training targets were taken from
the tri3 GMM forced alignment: silence and noise phones were
treated as silence class, and the rest phones as target speech or
non-target speech for the original and “negative” utterances, re-
spectively.

TS-VAD model outputs a sequence of probabilities of tar-
get speaker presence for each time frame. To convert it into
the segmentation, the simple post-processing described in Sec-
tion 5 was applied. After multiple experiments with i-vectors
computed on non-overlapping regions of manual segmentation,
we managed to obtain DER=66.81% on the development data
(for all experiments on manual segmentation, we used CH1 of
the reference device, i.e., the device closest to the currently ac-
tive speaker).

Single-speaker TS-VAD processes each speaker indepen-
dently, which is intuitively sub-optimal. So, we introduced an
additional “mutual” threshold to the post-processing procedure.
Considering a set of speech probabilities on the current frame,
we found that there is likely no speech of those speakers whose
probabilities are strongly dominated by the maximum proba-
bility on this frame. Thus, the probability was set to zero if
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it differed from the maximum probability on the current frame
by more than the threshold. This trick provided a dramatic di-
arization improvement reducing DER to 46.12%, which looked
promising.

3.2. Multi-Speaker model

We also experimented with the EEND model [20], hoping it
would work well for CHiME-6 data. Unfortunately, this was
not the case due to several reasons. First of all, the relatively
short audio pieces are required to apply EEND since the self-
attention module needs to see the whole sequence. But such
block-wise processing induces the between-block speaker per-
mutation problem. We used oracle permutation to estimate the
lowest possible DER for the EEND. An oracle DER of the
EEND model trained on the VoxCeleb data was comparable to
DER of the baseline diarization, presumably due to the severe
acoustic mismatch between the VoxCeleb and CHiME-6 data.
The model trained on CHiME-6 data provided much better ora-
cle DER (about 50%). To resolve between-block permutations,
we extracted baseline x-vectors from the EEND-induced seg-
ments and applied several clustering approaches to them. We
found that the simple unconstrained k-means algorithm worked
best, but the obtained DERs were only slightly better than those
of the baseline diarization. Nonetheless, we adopted some ideas
from EEND to improve the TS-VAD model.

As the CHiME-6 diarization task is closed (the number of
speakers in a session is always four), we decided to use i-vectors
of all speakers in the session as inputs, instead of the target
speaker’s i-vector only. The initial model was designed to es-
timate speech probability for the speaker corresponding to the
first i-vector. It was beneficial to average the predicted proba-
bilities obtained on various permutations of i-vectors. However,
much better results were obtained with the TS-VAD model de-
signed to predict speech probabilities for all speakers simulta-
neously, as the EEND model does. This model with four output
layers was trained using a sum of binary cross-entropies as a
loss function. We also found that it is essential to process each
speaker by the same Speaker Detection (SD) 2-layer BLSTMP,
and then combine SD outputs for all speakers by one more
BLSTMP layer. The model architecture is shown in Figure 1.
Note that parameters of the SD block are shared across speak-
ers, and it is trained jointly with the whole TS-VAD model.

Figure 1: Single-channel TS-VAD scheme

As we performed all the experiments in the Kaldi ASR
Toolkit [28], it was easier to use 2-class softmax instead of a sig-

moid in the output layers. Training targets were 8-dimensional
vectors representing four pairs of silence and speech probabil-
ities corresponding to four speakers. Given an utterance, tar-
gets corresponding to the current speaker were taken directly
from the forced alignment. Targets for the three other speakers
were obtained by averaging alignments from neighboring over-
lapping utterances over all the devices and channels (for non-
overlapping frames, targets for speech and silence were 0 and
1, respectively).

To provide more data variability, we performed on-the-fly
random permutations of speakers (i.e., both i-vectors and tar-
gets) during the training. It was also beneficial to use the mixup
data augmentation [29] using our Kaldi-compatible tools pre-
sented in [30]. Moreover, we obtained a small DER improve-
ment (about 0.5%) by adding an 800h subset of the VoxCeleb
data augmented by artificial room impulse responses. The final
multi-speaker model achieved an impressive DER of 37.40%
using i-vectors estimated on manual segmentation.

Note that the “mutual” threshold providing a huge DER re-
duction for the single-speaker TS-VAD turned out to be totally
useless for the multi-speaker model.

3.3. Estimation of i-vectors

After the experiments on manual segments, we switched to the
real CHiME-6 task and tried to compute i-vectors from the seg-
mentation provided by the baseline clustering-based diarization
(DER=63.42% on the development set).

Unfortunately, the early versions of TS-VAD did not pro-
vide any tangible improvement over the baseline results. So,
we firstly focused on improving the baseline diarization. To
this end, we applied the improved x-vectors extractor based on
a Wide ResNet (WRN), which was trained on the VoxCeleb
data. The details on the extractor are given in [31]. Application
of the baseline Agglomerative Hierarchical Clustering (AHC)
based on PLDA scoring to these x-vectors improved DER by
about 10% abs. Then we used the idea from [32] and replaced
AHC clustering based on PLDA scores with Spectral Cluster-
ing (SC) based on Cosine Similarities. Using similarity matrix
binarization with respect to automatically chosen threshold [32]
provided the consistent DER improvement on both the develop-
ment and evaluation sets (see Table 2 for the results). Besides,
using WRN x-vectors substantially improved the permutation
resolution on the EEND segmentation and covered a large frac-
tion of the gap to the oracle DER.

The improved clustering-based diarization provided a good
initial estimation of i-vectors for TS-VAD. The next idea was
to re-estimate i-vectors iteratively, using segmentation from the
previous TS-VAD iteration. However, we found that even better
results can be achieved using probabilities obtained by the TS-
VAD as soft-weights for re-estimation of i-vectors. Note that,
to ensure robust i-vectors estimation, for each speaker we con-
sidered only those frames where speech probability was more
than 0.8 of total speech probability for all speakers on a given
frame. The second iteration provided a significant gain, but the
third one did not lead to any improvement. Note that such i-
vectors estimation provides as good results as i-vectors com-
puted on manual segmentation3. Later we found that the same
iterative procedure with the best TS-VAD model starting from
the baseline diarization also improves DER by about 15% ab-
solute. However, more iterations are required for convergence.

3In the same conditions without WPE and channel averaging, iter-
ative i-vector estimation led to 38% DER, compared to 37.4% on the
manual segments.
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4. Multi-channel processing
The single-channel version of TS-VAD (TS-VAD-1C) pro-
cesses each channel separately, but we suggested that the multi-
channel processing may be beneficial. Indeed, we found that
the multi-channel Weighted Prediction Error (WPE) derever-
beration [33, 34] improves the results of TS-VAD by about 1%
DER absolute. Moreover, averaging of per-channel TS-VAD
probabilities provides up to 2% absolute DER reduction.

To process separate Kinect channels jointly, we investigated
the multi-channel TS-VAD model (TS-VAD-MC), which takes
a combination of TS-VAD-1C model SD blocks outputs from a
set of 10 Kinect recordings as an input. The architecture of this
model is presented in Figure 2. The channels of input Kinect
recordings are chosen randomly for training, while CH1 and
CH4 are taken at test-time. This way of combining information
from different channels is more effective than a simple averag-
ing of probabilities, as in the TS-VAD-1C model. All the SD
vectors for each speaker are passed through a 1-d convolutional
layer and then combined by means of a simple attention mecha-
nism. Combined outputs of attention for all speakers are passed
through a single BLSTM layer and converted into a set of per-
frame probabilities of each speaker’s presence/absence.

Figure 2: Multi-channel TS-VAD scheme

Finally, to improve overall diarization performance, we
fused 3 single-channel and 3 multi-channel TS-VAD models by
computing a weighted average of their probability streams. Fu-
sion weights were tuned to minimize DER on the development
set. The diarization results on different stages of our system are
presented in Table 2.

DEV EVAL
DER JER DER JER

x-vectors + AHC 63.42 70.83 68.20 72.54
EEND + WRN x-vectors 52.20 57.42 56.01 61.49
WRN x-vectors + AHC 53.45 56.76 63.79 62.02
WRN x-vectors + SC 47.29 49.03 60.10 57.99

+ TS-VAD-1C (it1) 39.19 40.87 45.01 47.03
+ TS-VAD-1C (it2) 35.80 37.38 39.80 41.79
+ TS-VAD-MC 34.59 36.73 37.57 40.51

Fusion 32.84 36.31 36.02 40.10
Fusion* 41.76 44.04 40.71 45.32

Table 2: Diarization results (* stands for DIHARD II reference)

5. Post-processing
To convert the TS-VAD output probabilities into a sequence of
segments, the simple post-processing was applied. It includes
51-tap median filtering, binarization with the threshold of 0.4,
combining speech segments separated by pauses shorter than
0.3s, and deleting speech segments shorter than 0.2s.

Alternatively, Viterbi decoding was applied for the post-
processing. We introduced a simple Hidden Markov Model
(HMM) with 11 states representing silence, speech from each
of four speakers without overlaps, and overlapping speech from
6 possible pairs of speakers (overlaps of three and four speakers
were neglected due to short duration). The emission probabil-
ities in each state were induced from TS-VAD output proba-
bilities, while the transition probabilities were tuned to mini-
mize DER on the development set. The transitions from the
silence state to the two-speaker states and vice versa were pro-
hibited and other transition probabilities were shared between
any pairs of states with the same number of speakers (7 tunable
parameters in total). The most likely state sequence found by
the Viterbi search determined the final segments.

The influence of several post-processing techniques on
DER improvement is shown in Table 3.

Post-processing DEV EVAL

Best single TS-VAD T+F+S 34.59 37.57
Fusion T 34.73 37.52
Fusion T+F+S 33.56 36.63
Fusion V+S 32.84 36.02

Table 3: DER for different post-processing. T, F, S and V
stand for binarization with the threshold, median filtering, short
speech/pause processing, and Viterbi decoding, respectively.

6. Conclusions
We presented a novel approach for the diarization of multi-
speaker conversations, which provided state-of-the-art results
in a complex multi-channel dinner party scenario. The pro-
posed Target-Speaker VAD selects speech of every conversation
participant taking their i-vector as an input along with MFCC
features. Since the sufficiently good segmentation is required
for the reliable i-vectors estimation, we improved the baseline
clustering-based diarization significantly.

It is worth noting that we also tried to replace i-vectors with
more discriminative speaker embeddings like x-vectors as the
TS-VAD inputs, but results got much worse. We believe the rea-
son is that the relatively simple TS-VAD architecture is unable
to match well the current MFCC features to the speaker embed-
dings obtained from a much more complicated model. Another
possible reason is severe overfitting due to a sparse embeddings
space and a small number of speakers in the training data.

Although our final solution is task-dependent (multi-
channel input, a fixed number of speakers), we believe the pro-
posed approach is flexible enough to be easily modified for
other similar tasks. In the future, we plan to extend our so-
lution to the scenario of informal meetings with an unknown
large number of participants.
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