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Abstract

Nowadays, synthetic speech is almost indistinguishable from
human speech. The remarkable quality is mainly due to the dis-
placing of signal processing based vocoders in favour of neural
vocoders and, in particular, the WaveNet architecture. At the
same time, speech synthesis evaluation is still facing difficulties
in adjusting to these improvements. These difficulties are even
more prevalent in the case of objective evaluation methodolo-
gies which do not correlate well with human perception. Yet, an
often forgotten use of objective evaluation is to uncover promi-
nent differences between speech signals. Such differences are
crucial to decipher the improvement introduced by the use of
WaveNet. Therefore, abandoning objective evaluation could be
a serious mistake. In this paper, we analyze vocoded synthetic
speech re-rendered using WaveNet, comparing it to standard
vocoded speech. To do so, we objectively compare spectro-
grams and neurograms, the latter being the output of AN mod-
els. The spectrograms allow us to look at the speech produc-
tion side, and the neurograms relate to the speech perception
path. While we were not yet able to pinpoint how WaveNet and
WORLD differ, our results suggest that the Mean-Rate (MR)
neurograms in particular warrant further investigation.

Index Terms: Speech synthesis analysis, Wavenet, AN model

1. Introduction

In recent years, the advances in speech synthesis have led to
a highly realistic synthesized speech signal which is almost
indistinguishable from human speech. A crucial step in this
evolution was the introduction of WaveNet [1] and its applica-
tion as a neural vocoder. As several studies [2, 3] showed, us-
ing WaveNet significantly improved the MOS scores of the re-
sulting speech compared to signal-processing based vocoders.
The impressive results achieved by WaveNet resulted in the
displacement of signal-processing based vocoders in favor of
neural vocoders. This shift is apparent in the latest edition of
the Blizzard Challenge [4] in which a resounding majority of
the participating systems include a neural vocoder. In addi-
tion, researchers are exploring the replacement of the signal-
processing based vocoder in every possible architecture. One
detailed study is presented by Wang et al. [5] which proposes a
source-filter neural vocoder.

Despite the predominance of neural vocoders in speech
synthesis, the number of studies that focus on the analysis of
the speech produced by WaveNet remains limited. Vit et al.
present an useful analysis which investigates the influence of
the training data on the results of WaveNet in [6]. The pur-
pose of this study was to evaluate the robustness of WaveNet
on noisy data. In [7]; the authors propose to evaluate multi-
ple combination of vocoders and back-end available in speech
synthesis using a MOS test. In [8], the authors compares multi-
ple neural vocoders using a MUSHRA test. Finally, in [2] and
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in [3], the authors validated their own implementation of a neu-
ral vocoder based on WaveNet. To do so, the authors conducted
experiments to compare, both objectively and subjectively, the
quality of WaveNet to the standard vocoder STRAIGHT [9]. In
both studies, the objective evaluation was conducted on spectro-
grams. However, the results were used for a validation purpose
and there is no insight into what WaveNet learns. Thus, it is
apparent that there is a lack of investigation into what WaveNet
actually learns about speech.

As discussed by Wagner et al. in [10], the evaluation and,
hence, the analysis of synthetic speech is no easy task. While
subjective evaluation is critical to get human feedback on syn-
thetic speech, the results are difficult to interpret in detail. Fur-
thermore, objective evaluation results do not correlate well with
listener tests, and are mainly used for validation purposes. Thus,
the current state of the art does not provide protocols to pinpoint
the improvement brought about by the introduction of neural
vocoders. Yet an alternative use-case of objective evaluation
methodologies is currently neglected by the community: iden-
tifying key differences to further analyze. While some stud-
ies [11] have acknowledged this asset of objective evaluation,
they restricted its application to only improving the significance
of the subjective evaluation results.

In this paper, we analyse the impact of WaveNet on syn-
thetic speech compared to a standard signal-processing based
vocoder: WORLD. To do so, and despite the flaws, we argue
that objective evaluation is a good starting point to decipher
the improvement from the use of WaveNet in place of signal-
processing based vocoders. We conduct the analysis using com-
plementary time-frequency representations of the speech signal.
Our hypothesis is that differences prominent in both represen-
tations can help focus a subjective analysis in the future. The
focus of this paper is the objective comparison.

The first representation used is the log-spectrogram, as it
corresponds to the standard input of WaveNet. The second
representation is the neurogram, which is the output of an AN
model. The research in AN modelling is a crucial field in audi-
ology, with medical applications which require a critical under-
standing of the hearing process [12]. Thereby, considering the
capabilities of AN models, we believe they provide a useful tool
to simulate part of the speech perception pipeline. AN models
have been applied successfully as an enhancer for the concate-
nation cost in Unit Selection (US) systems in [13]. In [14], we
applied a state-of-the-art AN model to analyze vocoded syn-
thetic speech. For all these reasons, we propose an objective
analysis protocol which compares aligned synthetic speech us-
ing spectrograms and neurograms on different scales.

2. Experimental protocol

The experimental protocol developed to conduct the analysis is
presented in Figure 1. There are three main blocks. The first
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Figure 1: The evaluation protocol architecture. The “data preparation” block has two stages. First, it trains a TTS model from the
training corpus. In parallel, a WaveNet model is trained using only the speech signal from the training corpus. The second stage
is the generation of the samples for analysis. Using the linguistic labels of the test corpus, the TTS system synthesizes the vocoded
samples. These samples are then re-rendered using wavenet to obtain the second set of samples. The ground truth is the natural samples
from the test corpus. From these 3 samples, the “representation” block extracts the time-frequency representations (spectograms and
neurograms) used for the analysis. The third block (“‘segmentation”) segments the representations into phonetic segments and frequency
bands to focus the analysis. The final “comparison” block computes a set of metrics (RMSE, NSIM) to complete the comparison.

block (data preparation) generates the speech samples for the
evaluation. The second block (representation), extracts the rep-
resentations from the speech samples for further analysis. To
focus the analysis, the third block (segmentation), segments the
representation into dedicated areas. Finally, the last block (com-
parison), applies metrics to compare the different representa-
tions of the speech. The following sections describe each block
in detail, according to their position in the pipeline.

2.1. Data preparation: TTS toolkits and corpora

The first step is to obtain the speech samples. A critical aspect
of our analysis is a fully reproducible protocol. Consequently,
to synthesize the samples need for the analysis, our study relies
on a dataset, as well as toolkits, which are freely available.

The corpus used is the standard CMU ARCTIC
dataset [15], specifically the SLT voice. The SLT voice
is US female speaker containing 1132 utterances which
represents a total of about 50 min of speech sampled at 16 kHz.
This corpus is widely used in the community and has the
advantage that all the tools used in this study provide dedicated
recipes. The only modification we apply to these recipes is to
randomly extract 100 files which become the test corpus.

The central tool of this block is Merlin [16]. Merlin is a
widely used deep neural network (DNN) backend which pro-
vides a full synthesis pipeline from the descriptive features to
the signal rendered using WORLD [17]. To get the descriptive
features, we used MaryTTS [18] as a frontend. All the features
predicted are those proposed in [19] excluding the intonation
information at the sentence level (i.e. ToBI tag). Lastly, the
implementation of WaveNet is an open-source implementation
available on github [20]. WaveNet is trained based on the pro-
vided recipe to obtain a Mixture Of logistics (MOL) model [20].

In order to measure the sensitivity of WaveNet and
WORLD to back-end behaviour, we condition Merlin by differ-
ent linguistic descriptive feature subsets. To do so, we followed
an incremental approach already proposed in [14]. We distin-
guish six subsets which can be summarized in two categories.
The first category focuses on the influence of the direct phonetic
context on the synthetic signals. It comprises the monophone
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Table 1: Descriptive feature sets. “prev.” = previous; ‘“re-
render.” = re-rendering and “AS” for analysis/synthesis. For a
detailed description of position and prosodic features, see [19].

| Identifier | Description

‘ nat ‘ Natural signal
world AS based on WORLD
wavenet AS based on WaveNet

w-wavenet WaveNet re-render. of world

1 | min Current phoneme

2 | p3 1 + previous/next phonemes

3| p5 2 + prev.-prev./next-next phonemes
4 | p5-sy_full 3 + syllable informations

5 | p5-wrd_full | 4+ word informations

6 | full 5 + phrase/utterance informations

subset (min) which is the minimal information; the triphone
subset p3 which incorporates the direct phonetic context (pre-
vious and following phoneme); and the quinphone subset (p5)
which expands the context window of an additional phone in
both directions. The second category is based on p5 and fo-
cuses on higher-level features. More specifically it targets the
influence of position as well as prosodic features at the syllable
level (p5-sy_full), at the word level (p5-wrd_full) and
finally at a phrase and utterance level full. We also consider
four additional conditions focused on the analysis/synthesis: the
natural signal (nat); the analysis/synthesis using respectively
WaveNet (wavenet) and WORLD (wor1d); the re-rendering
of the condition world using wavenet. This last one, identi-
fied by w-wavenet, is used to investigate what WaveNet can
do with the optimal WORLD rendering. All of these conditions
are summarized in Table 1.

2.2. Speech representation: spectrograms and neurograms

To investigate which differences are the most salient be-
tween speech synthesized using WORLD and its WaveNet re-



rendering, we rely on two time-frequency representations: spec-
trograms and neurograms.

A spectrogram is the most commonly used time-frequency
representation of the speech signal. It is used in speech science
for analysis purposes, and in speech technology as an input fea-
ture or as a feature to predict. Its widespread usefulness is from
the ability to correlate characteristics of the articulatory produc-
tion of speech units to visual patterns in their acoustic realisa-
tion [21]. Furthermore, these patterns are generally localised in
some specific frequency sub-bands. For example, the analysis
of vowels shows that the first formant position is generally be-
low 1kHz, while the majority of the energy of some fricatives
is condensed in the higher frequencies. Duration properties are
also exhibited by the spectrograms, e.g. the patterns related to
vowels are longer than the ones related to unvoiced plosives.
Consequently, by comparing spectrograms, we are not only able
to visualize where two speech signals differ but also interpret
this difference to a certain extent. Spectrograms are also com-
monly used as the input of WaveNet when it is used as a neural
vocoder (e.g. Tacotron [22]).

Narrowband spectrograms are computed using a window
size of above 30 ms and are commonly used to visualize for-
mants. In contrast, wideband spectrograms are computed with a
window size of only a few milliseconds and reveal the harmonic
structure of the speech signal [21]. We use both narrowband
and wideband log-spectrograms in our analysis. The narrow-
band spectrogram is computed using a window size of 40 ms,
while the wideband spectrogram is computed using a window
size of 5ms.

Neurograms are the time-frequency representation of the
output of an AN model. An AN model can be described (sim-
plistically) as a sequence of filters that model the behaviour of
the human auditory system from the external ear to the auditory
nerve fibres. An AN model generates a Post Stimulus Time His-
togram (PSTH) for a set of Characteristic Frequencies (CF) in
response to an input audio signal. A neurogram is the 3D rep-
resentation of the PSTH across time for each CF. Therefore, we
can visualize the speech neurogram the same way as we do for
a spectrogram.

Multiple AN models have been developed, but, for this
study, we are using the model proposed by Bruce et al. [23].
This model is the result of research started over 15 years ago
and is still in active development. Furthermore, it is freely avail-
able for research purposes'. We use the default configuration of
this model adapted for the human ear. The signal is converted
to an instantaneous pressure waveform, resampled at 100 kHz
and the CFs are logarithmically spaced from 250 Hz to 16 kHz.
Analogous to spectrograms, the detail in a neurogram is influ-
ence by the bin size used to compute the PSTH. As in [14], we
use two kind of neurograms: the Fine-Timing (FT) neurograms
which include spike timing of the neural responses by using a
window size of 320 us with an overlap of 160 ps; the MR neu-
rograms which give only a mean discharge rate over time with
a window size of 12.80 ms and an overlap of 6.40 ms.

Our intention is that the spectrograms will allow us to look
at the speech production aspects, and the neurograms relate to
the speech perception path.

2.3. Segmentation

With natural speech as our reference, our goal is to identify
which part of the speech signal is improved, or simply changed,

IThe implementation used is available at http://www.ece.
mcmaster.ca/~ibruce/zbcANmodel/zbcANmodel.htm
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by WaveNet in comparison to WORLD. Based on the proper-
ties of the spectrograms presented in the previous subsection,
we divide the image along the time and the frequency axes. For
the time axis, we use the phone as a unit as it is the easiest unit
to interpret. For the frequency axis, we use fixed subbands from
250Hz to 8 kHz with steps at 1kHz, 2kHz, 4 kHz and 8 kHz.
These bands are anchored to exact values in the CF vector and
only diverge by couple of hertz from their closest values in the
frequency vector associated with the spectrograms. Future work
could examine aligning these directly with critical bands.

2.4. Comparison

The last block computes the actual metrics used in the analy-
sis. We use two metrics: the Root Mean Square Error (RMSE)
and the Neurogram Similarity Index Measure (NSIM) [24]. The
RMSE is used as standard in previous studies [2, 3] to com-
pare spectrograms extracted from speech signals generated by
both WaveNet and signal-processing based vocoder. The NSIM
approach is slightly different as it evolved from the Structural
Similarity Index Measure (SSIM) [25] designed to compare two
aligned images. The structural hypothesis which is the founda-
tion of the SSIM is that spatially close pixels have strong inter-
dependencies. Consequently, a Gaussian window is introduced
to “look™ at each pixel and its context. By employing such a de-
sign, this metric is able to exhibit better discrimination than the
RMSE [25, 24]. NSIM adapted SSIM to the specificities of a
time-frequency speech representation. NSIM has been applied
to compare both neurograms [24] and spectrograms [26], and
the metric is used in audio quality [27].

3. Results of the analysis

To conduct the analysis, 1032 utterances from the SLT voice
(about 45 min) of data were used to train the WaveNet and
WORLD systems. The test corpus is composed of 100 test sen-
tences (about 3 min). These synthetic speech samples were each
compared to their natural counterpart by applying the NSIM and
RMSE metrics to the aligned and segmented neurogram and
spectrogram representations.

3.1. Global analysis results

The global results are presented in Figure 2. The results using
the RMSE? to perform the comparison are presented in Fig-
ure 2a. The analogous results using the NSIM are presented
in Figure 2b. For the RMSE metric, lower is better, whereas for
the NSIM metric, closer to 1 is better.

Foremost, if we compare the evolution of the distances
along the condition axis (x-axis), we can see that our results
are consistent with those presented in [14]. For both metrics,
the analysis/synthesis signal (as) is more similar to the natural
signal than the synthesis conditions. We also can observe a sta-
tistically significant improvement from min to p5-sy_full
for the MR neurograms. When applying NSIM to the MR neu-
rograms and the RMSE metric to the wideband spectrograms,
we find that WORLD is more similar to the natural voice than
WaveNet is. It is notable that the NSIM values associated with
the MR neurograms are much lower overall. These values be-
tween 0.2 and 0.4 are indicating major differences are found
between the natural and synthetic speech. Despite the met-
ric’s advantages over RMSE, NSIM may be less sensitive in

2 For the spectrogram, the y-axis is in dB while for the neurogram it
is a count so there is no unit.
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Figure 2: Comparison across test data to the Natural signal®.
FT and MR = FT and MR neurogram; WIDE and NAR. = wide-
band and narrowband spectrogram; Green (as) denotes anal-
ysis/synthesis; red (w-wavenet) denotes resynthesis of WORLD
speech using WaveNet; blue denotes the synthesis configura-
tions. Error bars represent the confidence intervals at 95 %.

this range [26]. In these MR neurograms, the RMSE is able to
flag these large differences from the natural voice, and signifi-
cant differences between WORLD and WaveNet, with WORLD
more similar to the natural speech. The other representa-
tion that uncovers significant differences between WORLD and
WaveNet is the wideband spectrogram, when comparing signals
to natural speech with NSIM. Here WORLD is more similar to
the natural speech across all the synthetic conditions.

Overall, these results suggest that key differences between
WORLD and WaveNet may occur in the temporal envelope cap-
tured in the MR neurograms and the formant structure captured
in the wideband spectrogram. The narrowband spectrograms
and FT neurograms don’t appear to uncover any differences.

3.2. Local analysis

We conducted a focused analysis of the MR neurograms and
wideband spectrogram using NSIM. This analysis is broken
down into individual phones and frequency subbands. We only
consider the full synthesis condition for this analysis. Re-
sults are presented in Figure 3a for the MR neurograms and
in Figure 3b for the wideband spectrogram. Each cell in these
matrices represents how different NSIM indicates the synthetic
voice is from the natural voice, for that phonetic group, in that
specific frequency range.

From Figure 3b, we can see that the primary source of dis-
similarities is in the first frequency band for vowels and vocalic
consonants. This supports the idea that the wideband spectro-
gram uncovers differences in formant structure, specifically be-
low 1kHz.

The MR neurograms in Figure 3a uncover differences
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Figure 3: Decomposition of NSIM values for MR neurogram
representation of the “full” condition. Lower NSIM values, i.e.
less similar, have darker cells.

across multiple frequency bands. The fricatives exhibit more
differences than other phone categories across all frequency
bands. The second and third bands (1 kHz to 4 kHz) show the
greatest dissimilarities, which are even more pronounced for
WaveNet. This suggests than the MR neurograms are more sen-
sitive to the variations of the second and third formants. Thus
we have identified MR neurograms and wideband spectrograms
as useful representations to signpost interesting properties of
synthetic speech.

4. Conclusion

We have designed an objective evaluation protocol and applied
it to compare WaveNet rendered speech, and its WORLD coun-
terpart, to natural speech. Frustratingly, initial comparisons
show that WORLD yields speech that is more similar as a signal
to natural speech than WaveNet. This may contradict MOS tests
showing the superiority of WaveNet [7], but reminds us that
the overall perceptual effect of a signal is much more complex.
Closely reproducing a signal at a local level does not guarantee
naturalness. While we were not yet able to pinpoint how these
two systems differ, we believe that MR neurograms in particu-
lar warrant further investigation as they relate to the perception
of speech.
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