
Efficient WaveGlow: An Improved WaveGlow Vocoder with Enhanced Speed

Wei Song, Guanghui Xu, Zhengchen Zhang, Chao Zhang, Xiaodong He, Bowen Zhou

JD AI Research
{songwei11,xuguanghui,zhangzhengchen1,chao.zhang,xiaodong.he,bowen.zhou}@jd.com

Abstract
Neural vocoder, such as WaveGlow, has become an important
component in recent high-quality text-to-speech (TTS) systems.
In this paper, we propose Efficient WaveGlow (EWG), a flow-
based generative model serving as an efficient neural vocoder.
Similar to WaveGlow, EWG has a normalizing flow backbone
where each flow step consists of an affine coupling layer and an
invertible 1×1 convolution. To reduce the number of model pa-
rameters and enhance the speed without sacrificing the quality
of the synthesized speech, EWG improves WaveGlow in three
aspects. First, the WaveNet-style transform network in Wave-
Glow is replaced with an FFTNet-style dilated convolution net-
work. Next, to reduce the computation cost, group convolution
is applied to both audio and local condition features. At last, the
local condition is shared among the transform network layers in
each coupling layer. As a result, EWG can reduce the number
of floating-point operations (FLOPs) required to generate one-
second audio and the number of model parameters both by more
than 12 times. Experimental results show that EWG can reduce
real-world inference time cost by more than twice, without any
obvious reduction in the speech quality.

1. Introduction
Speech synthesis, or TTS, is the task to generate speech audio
automatically and is an indispensable part of many artificial in-
telligence applications. Deep learning based end-to-end speech
synthesis approaches, such as Char2Wav [1], Tacotron [2],
Tacotron2 [3], DeepVoice [4–6], Transformer TTS [7], Fast-
Speech [8], and ParaNet [9] etc., have shown advantages in
speech quality over traditional statistical parametric speech syn-
thesis methods [10, 11]. Although these end-to-end networks
could synthesize speech with expressive and natural prosody, a
neural vocoder [12–17] is often necessary to synthesize high-
quality speech. Compared with the classical source-filter-based
WORLD vocoder [18], neural vocoders could generate high fi-
delity speech with nearly the same quality as human recordings.

Two types of neural vocoders are widely studied at present:
the autoregressive vocoders that generate speech in sequence,
and the non-autoregressive vocoders that generate speech in
parallel. Regarding the autoregressive vocoders, WaveNet [12]
stacks many dilated convolutional layers to increase the recep-
tive field over the waveform sequence, while WaveRNN [15]
and LPCNet [16] rely on long short-term memory (LSTM) net-
works [19] to model long-distance dependencies among wave-
form samples. Regarding non-autoregressive vocoders, multi-
ple samples can be synthesized in parallel, which is particularly
useful to speed up the waveform generation since waveform se-
quences are often very long (e.g. an one-second waveform with
16kHz sample-rate has a length of 16,000). Non-autoregressive
vocoders can be implemented using generative adversarial net-
works (GANs) [20], such as MelGAN [21] and WaveGAN [22].

Thanks to Xin Yuan for managing the scoring procedure.

GAN-based neural vocoders use the discriminator models to
evaluate the quality of the synthesized speech during training.

Alternatively, the non-autoregressive neural vocoders can
be implemented as flow-based models. Parallel WaveNet [13]
and ClariNet [23] use inverse autoregressive flow (IAF) [24]
to convert white noise to waveform, which can be processed
in parallel since the transform of each variable only depends
on its direct preceding variable in IAF. Both Parallel WaveNet
and ClariNet are trained by distilling pre-trained autoregressive
models using teacher-student training and need extra objective
functions, which makes them not easy to train. Different from
Parallel WaveNet, WaveGlow [25] synthesizes speech by Glow-
style normalizing flow [26] instead of IAF and simplifies train-
ing to use a single model and a single loss function. On the
other hand, WaveGlow has a large model size with 12 coupling
blocks and 12 invertible 1×1 convolution layers, and each cou-
pling block consists of a stack of 8 dilated convolution layers.
This makes WaveGlow not only hard to use in applications with
a constrained memory budget but also overly computational ex-
pensive for CPU-based inference.

In this paper, we propose Efficient WaveGlow (EWG), an
improvement to WaveGlow that can considerably reduce the
numbers of parameters and floating-point operations (FLOPs)
required to generate a second of audio, without any obvious
degradation in the quality of the synthesized speech. Compar-
ing to WaveGlow, EWG uses the following three modifications:

• using the structure of FFTNet [27] instead of WaveNet
for the transform networks;

• using group convolution [28] instead of the standard con-
volution in each transform network;

• sharing the local conditions, a.k.a. the 1×1 convolu-
tion kernels, across all layers of the transform network
in each coupling layer.

Experimental results showed that EWG with 8 group convo-
lutions and a bidirectional LSTM (BLSTM) Mel-spectrogram
encoder can synthesize speech with a similar quality to Wave-
Glow, while reducing both numbers of model parameters and
FLOPs by 12 times. Both GPU- and CPU-based inference time
cost is reduced by more than twice without further optimization.

The remainder of this paper is as follows: Section 2 reviews
the normalizing flow and WaveGlow. The proposed EWG is
introduced in detail in Section 3. Experimental setup and results
are presented in Section 4 and 5, followed by conclusions.

2. Preliminaries
2.1. Normalizing flow

A normalizing flow [26, 29–31] converts a probability density
to a target probability density by a sequence of invertible map-
pings. When using an invertible mapping f to transform a ran-
dom variable z with a distribution p(z), the resulting random

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-2172225



Figure 1: A sketch map of WaveGlow. The transform network
(colored green) is associated with the coupling layers, which is
WaveNet-style for WaveGlow and FFTNet-style for EWG.

variable z′ = f(z) has a log probability as Eqn. (1) by change
of variables rule.

log p(z′) = log p(z) + log
∣∣det(∂z/∂z′)

∣∣ (1)

where det(·) refers to the determinant of a Jacobian matrix.
A random variable x can be obtained by successively trans-

forming a random variable z0 by a chain of invertible mappings:

z0 ∼ N (z0;0, I) (2)

x = fK ...f2 ◦ f1(z0) (3)

whereN (z0;0, I) refers to a multivariate Gaussian distribution
with zero mean and unit variance, K is the number of invertible
mappings, Eqn. (3) uses a shorthand for a sequence of invertible
mappings fK(...f2(f1(z0))), and we denote zk = fk(zk−1).

The log-likelihood of variable x could be calculated di-
rectly by using the change of variables rule:

log p(x) = log p(z0) +
∑K

k=1
log | det(∂zk−1/∂zk)| (4)

2.2. WaveGlow

In this paper, WaveGlow [25] is used as our network backbone.
WaveGlow is a flow-based generative model, which converts
random white noise to speech in parallel. WaveGlow uses the
flow structure proposed in Glow [26]. Each flow step contains
an affine coupling layer followed by an invertible 1 × 1 con-
volution [32]. The structure of WaveGlow is shown in Fig. 1.

In an affine coupling layer, the input feature x is split into
two halves along the channel dimension, xa and xb. xa re-
mains unchanged while xb is updated by an affine transform
taking xa as the input. That is,

xa,xb = split(x) (5)
s, t = transform network(xa, local condition) (6)
y = concat(xa,xb � s+ t) (7)

where y is the output of the layer. The Jacobian matrix of an
affine coupling layer is a lower triangle matrix, whose log de-
terminant equals to the sum of the log of its diagonal elements.
Since the transform of the affine coupling layer is invertible, the
transform network is invertible.

An invertible 1 × 1 convolution is followed by each affine
coupling layer, to fuse the information carried in each halve and
avoid the problem that some channels may never be updated.

In WaveGlow, a WaveNet-style [12] transform network is
used, which consists of 8 dilated 1-dimensional (-dim) convo-
lution layers. Each layer uses a convolution kernel with a width
of 3, and each sample has a receptive field on both left and right.

The log determinant of the Jacobian matrix of an affine cou-
pling layer, f−1

coupling(x), is:

log
∣∣det(J(f−1

coupling(x)))
∣∣ = log |s| =

∑C

c=1
log sc (8)

where C is the number of channels. The log determinant of
the Jacobian matrix of an invertible 1 × 1 convolution layer,
f−1
1×1conv = Wx, is

log
∣∣det(J(f−1

1×1conv(x)))
∣∣ = log |det(W)| (9)

The training loss of WaveGlow can be presented as:

log p (x) = log p (z)

+
∑K

k=1
log |det(Wk)|

+
∑K

k=1
log |sk|

(10)

where K is the total number of steps in the flow.

3. Efficient WaveGlow
EWG follows the normalizing flow strucutre of Glow with an
improved transform network showed in Fig. 1. Three modi-
fications of the transform network are proposed in this paper.
First, the WaveNet-style transform network is replaced with an
FFTNet. Second, group convolution is used to further reduce
the number of model parameters. Third, the local condition is
shared among the transform network layers in each flow step.

3.1. FFTNet-style affine transform network

Inspired by the Fast Fourier Transform (FFT) [33], FFTNet [27]
creates a network that follows the FFT [33] structure. Given
an input audio sequence x0,x1, ...,xN−1, each FFTNet layer
clips the input sequence into two halves, xL and xR. A separate
set of 1×1 convolution kernels is used for each halve, and then
the results are summed together. Specifically, there is

z = WL ∗ xL +WR ∗ xR (11)

where ∗ denotes a convolution operator, WL and WR are the
1×1 convolution kernels for xL and xR. FFTNet stacks 11 lay-
ers to increase the receptive field and the final layer’s output is
used to predict sample xN . FFTNet substitutes the gated acti-
vation in WaveNet with a simple ReLU activation and removes
the skip output in each layer. In fact, FFTNet is just a reversed
dilated convolution with a kernel width of 2. WaveNet uses in-
creasing dilation from the bottom to the top while FFTNet uses
increasing dilation from the top to the bottom.

An FFTNet-style network is used as the transform network
to reduce the computational complexity. In EWG, the causal
convolution in FFTNet is replaced with the symmetrical con-
volution with a kernel of width 3, which enlarges the receptive
field by twice. In the parallel speech synthesis, the convolution
causal is not kept.

zi = WL ∗ xi−d +WM ∗ xi +WR ∗ xi+d (12)

226



Figure 2: An example of the FFTNet-style dilated convolution
network. Each layer contains a dilated convolution with ReLU
activation and a 1× 1 convolution layer with ReLU activation.

where WL,WM and WR are 1×1 convolution kernels for
xi−d,xi and xi+d, d is the dilation for current layer, and i
is the layer index. Different from FFTNet where separate lo-
cal condition convolution kernels are used for each halve, only
a single 1×1 convolution kernel is used in our method for the
local condition in each layer. That is,

zi = (WL ∗xi−d+WM ∗xi+WR ∗xi+d)+Vi ∗hi (13)

where Vi is 1×1 convolution kernel and hi is the local condi-
tion for the i th audio sample.

Our transform network structure is illustrated in Fig. 2,
whose output sample has a receptive field of 9 samples. A
ReLU [34] function is used for the dilated convolution before
using a 1×1 convolution with another ReLU function, namely
x = ReLU(1× 1conv(ReLU(z))). A residual connection [35]
is added in each dilated convolution layer of the transform net-
work to alleviate the gradient vanishing problem.

3.2. Group convolution

The widely used group convolution [28] in the computer vi-
sion domain is applied in our experiments to further reduce the
numbers of model parameters and FLOPs. We apply group con-
volution to both audio feature convolution and local condition
convolution. If n group is used in group convolution, the FLOPs
and number of parameters in one convolution layer could be re-
duced by n times. Table 1 shows a detailed comparison in the
reductions of FLOPs and the number of model parameters for
models with different group convolutions.

3.3. Local condition

Mel-spectrogram is used as local condition features for both
WaveGlow and EWG, which is encoded by a local condition
encoder to get the contextualized features. Two different Mel-
spectrogram encoders are used in our experiments. The first one
is a BLSTM encoder, which generates a local condition with
global and bi-directional contextual information. The second
one is a Conv1d encoder where 1-dim convolution layers are
used to encode the Mel-spectrogram to extract local contextual
information. The performance with both types of encoders is
given in Table 3. As the Mel-spectrogram encoder is a frame
rate network and the normalizing flow is a sample rate network,
the output from the Mel-spectrogram encoder is upsampled by
repeating to the sample rate.

Since the 1 × 1 convolution kernels for local condition ac-
counts for a large part of the total number of parameters, shar-
ing the local condition between the transform network layers in
each flow step is also studied. The same as in Eqn. (13), the

upsampled local condition is transformed by a 1 × 1 convolu-
tion and then shared across all layers in the transform network.
By using such a method of shared local condition (SLC), the
computational complexity and number of model parameters are
reduced by a large margin, as shown in Table 1.

4. Experimental Setup
We use LJSpeech [36] as our training corpus, which contains
13,100 sentences, encoded in 22,050Hz. We randomly select
200 sentences for test and use all remaining sentences for train-
ing. Mel-spectrogram is extracted by using 80 channel filter-
bank, with a hop size of 256 and a window size of 1024 samples.
The Adam [37] learning rate scheduler is used for network opti-
mization with an initial learning rate of 0.001, and the learning
rate is exponentially decayed every 50,000 steps. Each model
is trained for 1 million steps on 4 Nvidia Tesla P40 GPUs, with
synchronized gradient update.

Each convolution kernel is normalized by weight normal-
ization [38] to stabilize the model training procedure, we found
the model training process would be easy to fail without weight
normalization. The same model structure configuration as
WaveGlow with 12 flow steps is used. Each transform network
consists of 8 dilated convolution layers, with each of them hav-
ing 256 filters and a filter width of 3. The dilation numbers for
the eight layers in each transform network are set to 128, 64, 32,
16, 8, 4, 2, and 1 respectively. We output 2 channels for every 4
coupling layers, which is the same as WaveGlow.

Regarding the BLSTM Mel-spectrogram encoder, two bi-
directional LSTM layers with a hidden size of 128 are used in
this paper. For the Conv1d Mel-spectrogram encoder, two 1-
dimensional convolution layers with ReLU activations are used,
with each of them having 128 filters and a filter width of 5.

5. Experimental Results
5.1. FLOPs and number of model parameters

In Table 1, FLOPs is computed using 86 frames of Mel-
spectrograms (about 1 seconds). Compared to WaveGlow with
BLSTM Mel-spectrogram encoder (WaveGlow BLSTM), when
FFTNet-style transform network is used, EWG BLSTM re-
duces both FLOPs and number of model parameters by more
than 50%. When group convolution with 8 groups is further
incorporated, model EWG BLSTM G8 reduces the FLOPs and
number of model parameters by more than 12 times. When
shared local condition (SLC) is used in EWG with BLSTM en-
coder, model EWG BLSTM SLC reduces the FLOPs and num-
ber of model parameters by more than 4 times compared with
the WaveGlow BLSTM model. And further more, if group con-
volution with 8 groups is combined into model EWG BLSTM
SLC, model EWG BLSTM SLC G8 achieves 16 times FLOPs
reduction and 15 times parameters reduction.

The same FLOPs and number of model parameter reduc-
tion patterns could be found for models with Conv1d Mel-
spectrogram encoder.

5.2. Inference speed analysis

We use 400 frames (4.64 seconds) Mel-spectrograms to eval-
uate the network inference speed both on CPU 1 and GPU
(Nvidia Tesla P40) without any inference optimization. Regrad-
ing the inference on CPU, we restrict the computation to only 4

1Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz

227



Table 1: The numbers of FLOPs and of model parameters
(#Params) for models with BLSTM/Conv1d Mel-spectrogram
encoder. M and B stand million and billion respectively.

Model FLOPs #Params
BLSTM Conv1d BLSTM Conv1d

WaveGlow 833B 551B 152M 101M
EWG 417B 278B 76M 51M
EWG G4 96B 96B 24M 18M
EWG G8 65B 65B 12M 12M
EWG SLC 174B 156B 32M 29M
EWG SLC G8 52B 52B 10M 10M

Table 2: The inference time cost on a CPU or a P40 GPU for
models with BLSTM/Conv1d Mel-spectrogram encoder, and s
stands for second.

Model BLSTM Conv1d
CPU P40 CPU P40

WaveGlow 31.50s 0.80s 19.40s 0.60s
EWG 21.63s 0.50s 12.80s 0.36s
EWG G4 16.53s 0.38s 8.76s 0.27s
EWG G8 15.20s 0.37s 8.03s 0.24s
EWG SLC 7.39s 0.23s 6.30s 0.21s
EWG SLC G8 4.70s 0.15s 4.00s 0.13s

cores to mimic limited computation resources.
In Table 2, it could be see that EWG models reduce the in-

ference time by more than 1.6 times on P40, both for Conv1d
and BLSTM Mel-spectrogram encoders. When group convolu-
tion with 8 groups is used, model EWG Conv1d G8 achieves a
2.5 times speedup and model EWG BLSTM G8 achieves a 2.2
times speedup on P40. With shared local condition and group
convolution, model EWG Conv1d SLC G8 and EWG BLSTM
SLC G8 speed up the inference speed by 4.6 and 5.3 times re-
spectively.

Regarding the inference speed on CPU, compared with the
WaveGlow baseline model, model EWG BLSTM SLC G8 and
EWG Conv1d SLC G8 reduce the time cost by 6.7 and 4.9 times
separately and achieve real-time speech synthesis on CPU.

The inference speedup gain is not as large as gains with
the reduction of the FLOPs and number of model parameters,
this is due to the highly optimized matrix multiplication imple-
mentation and inner parallelization of PyTorch. With the huge
reduced FLOPs and number of model parameters, it could be
much easier for engineers to optimize the inference process, and
it would also be possible for model deployment with restricted
memory or CPU environment.

5.3. Subjective evaluation

Mean opinion score (MOS) test 2 is conducted to evaluate the
quality of the synthesized speech. We randomly select 20 sen-
tences in the test set and synthesize audios by different models,
each audio is listened by 20 testers that consist of native English
speakers and professional bilinguals.

In Table 3, models with BLSTM Mel-spectrogram encoder
surpass models with Conv1d Mel-spectrogram encoder, this

2The audio samples can be found at http://weixsong.
github.io/demos/EfficientWaveGlow/index.html

Table 3: The MOSs of models with BLSTM/Conv1d Mel-
spectrogram encoder.

Model BLSTM Conv1d

Ground Truth 4.55±0.11
WaveGlow 3.82±0.06 3.49±0.13
EWG 3.79±0.07 2.81±0.08
EWG G4 3.66±0.08 3.17±0.04
EWG G8 3.69±0.07 3.15±0.07
EWG SLC 3.65±0.07 3.32±0.05
EWG SLC G8 3.65±0.07 3.26±0.05

shows that BLSTM Mel-spectrogram encoder could extract
more robust and representative local condition features which
improves the model quality both for WaveGlow and EWG.
Compared to model WaveGlow BLSTM with a score of 3.82,
model EWG BLSTM has a nearly the same score of 3.79 and
model EWG BLSTM G8 has a score of 3.69. The quality degra-
dation for model EWG BLSTM G8 is acceptable but with more
than 12 times fewer number of model parameters. Model EWG
BLSTM SLC G8 has a nearly same score with model EWG
BLSTM G8, this indicates that the shared local condition could
also be leveraged to further reduce model parameters.

5.4. Discussion

FFTNet [27] synthesizes high-quality speech with a more sim-
ple network structure compared with WaveNet, so in this paper,
we use the FFTNet style transform network, experimental re-
sults showed that model EWG BLSTM performs identically to
model WaveGlow BLSTM.

Each transform network consists of 8 dilated convolution
layers and EWG has 12 transform networks, we assume that
there are lots of redundant local condition features if each di-
lated convolution layer in each transform network has a sepa-
rate 1×1 convolution kernel. So we use shared local condition
among transform network layers in each flow step to remove
redundant features and reduce the number of model parame-
ters, experimental results showed that with shared local condi-
tion model EWG BLSTM SLC G8 has a similar MOS score as
model EWG BLSTM G8.

6. Conclusions
EWG, an efficient flow-based generative model, is proposed and
used as a neural vocoder in this paper. Compared with Wave-
Glow, EWG can synthesize speech with a similar high-quality,
while significantly reducing both the number of FLOPs for gen-
erating the same piece of audio and the number of model param-
eters. Based on the WaveGlow architecture, to reduce the com-
putation and storage complexities, the FFTNet-style instead of
WaveNet-style transform network is used in the coupling layers,
and group convolution is further applied in the transform net-
works. For the vocoder models with BLSTM Mel-spectrogram
encoder and group convolution, both FLOPs and the number
of model parameters can be reduced by more than 12 times.
Further improvement could be achieved when the shared local
condition is incorporated. Experiments showed that the use of
EWG can reduce the real-world time cost for speech synthe-
sis by at least 50% with either CPU or GPU, and can synthe-
size speech without an obvious degradation in the mean opinion
scores.

228



7. References
[1] J. Sotelo, S. Mehri, K. Kumar, J. F. Santos, K. Kastner,

A. Courville, and Y. Bengio, “Char2Wav: End-to-end speech syn-
thesis,” in Proc. ICLR, Toulon, 2017.

[2] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss,
N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, L. Quoc, and
C. R. S. R. Agiomyrgiannakis, Yannis, “Tacotron: Towards end-
to-end speech synthesis,” in Proc. Interspeech, Stockholm, 2017.

[3] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan, R. A. Saurous,
Y. Agiomyrgiannakis, and Y. Wu, “Natural TTS synthesis by
conditioning wavenet on Mel spectrogram predictions,” in Proc.
ICASSP, Calgary, 2018.

[4] S. Ö. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, A. Ng, J. Raiman et al., “Deep voice:
Real-time neural text-to-speech,” in Proc. ICML, Sydney, 2017.

[5] A. Gibiansky, S. Arik, G. Diamos, J. Miller, K. Peng, W. Ping,
J. Raiman, and Y. Zhou, “Deep voice 2: Multi-speaker neural text-
to-speech,” in Proc. NIPS, Long Beach, 2017.

[6] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan,
S. Narang, J. Raiman, and J. Miller, “Deep voice 3: Scal-
ing text-to-speech with convolutional sequence learning,” in
arXiv:1710.07654, 2017.

[7] N. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu, “Neural speech synthe-
sis with Transformer network,” in Proc. AAAI, Honolulu, 2019.

[8] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y.
Liu, “FastSpeech: Fast, robust and controllable text to speech,” in
Proc. NIPS, Vancouver, 2019.

[9] K. Peng, W. Ping, Z. Song, and K. Zhao, “Parallel neural text-to-
speech,” in arXiv:1905.08459, 2019.

[10] Z. Wu, O. Watts, and S. King, “Merlin: An open source neu-
ral network speech synthesis system,” in Proc. SSW, Sunnyvale,
2016.

[11] H. Zen, K. Tokuda, and A. Black, “Statistical parametric speech
synthesis,” Speech Communication, vol. 51, no. 11, pp. 1039–
1064, 2009.

[12] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “WaveNet: A generative model for raw audio,”
in arXiv:1609.03499, 2016.

[13] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. v. d. Driessche, E. Lockhart, L. C. Cobo,
F. Stimberg, N. Casagrande, D. Grewe, S. Noury, S. Dieleman,
E. Elsen, N. Kalchbrenner, H. Zen, A. Graves, H. King, T. Wal-
ters, D. Belov, and D. Hassabis, “Parallel WaveNet: Fast high-
fidelity speech synthesis,” in Proc. ICML, Sydney, 2017.

[14] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo,
A. Courville, and Y. Bengio, “SampleRNN: An unconditional
end-to-end neural audio generation model,” in arXiv:1612.07837,
2016.

[15] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. van den Oord,
S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio
synthesis,” in arXiv:1802.08435, 2018.

[16] J.-M. Valin and J. Skoglund, “LPCNet: Improving neural speech
synthesis through linear prediction,” in Proc. ICASSP, Brighton,
2019.

[17] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “GANSynth: Adversarial neural audio synthesis,”
arXiv:1902.08710, 2019.

[18] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A vocoder-
based high-quality speech synthesis system for real-time applica-
tions,” IEICE Transactions on Information and Systems, vol. 99,
no. 7, pp. 1877–1884, 2016.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial nets,” in Proc. NIPS, Montreal, 2014.

[21] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh,
J. Sotelo, A. de Brébisson, Y. Bengio, and A. C. Courville, “Mel-
GAN: Generative adversarial networks for conditional waveform
synthesis,” in Proc. NIPS, Vancouver, 2019.

[22] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio
synthesis,” arXiv:1802.04208, 2018.

[23] W. Ping, K. Peng, and J. Chen, “ClariNet: Parallel wave genera-
tion in end-to-end text-to-speech,” arXiv:1807.07281, 2018.

[24] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever,
and M. Welling, “Improved variational inference with inverse au-
toregressive flow,” in Proc. NIPS, Barcelona, 2016.

[25] R. Prenger, R. Valle, and B. Catanzaro, “WaveGlow: A flow-
based generative network for speech synthesis,” in Proc. ICASSP,
Brighton, 2019.

[26] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with in-
vertible 1x1 convolutions,” in Proc. NIPS, Montreal, 2018.

[27] Z. Jin, A. Finkelstein, G. J. Mysore, and J. Lu, “FFTNet: A real-
time speaker-dependent neural vocoder,” in Proc. ICASSP, Cal-
gary, 2018.

[28] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An ex-
tremely efficient convolutional neural network for mobile de-
vices,” in Proc. CVPR, Salt Lake City, 2018.

[29] D. J. Rezende and S. Mohamed, “Variational inference with nor-
malizing flows,” in Proc. ICML, Lille, France, 2015.

[30] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation
using Real NVP,” in arXiv:1605.08803, 2016.

[31] L. Dinh, D. Krueger, and Y. Bengio, “NICE: Non-linear indepen-
dent components estimation,” in arXiv:1410.8516, 2014.

[32] M. Lin, Q. Chen, and S. Yan, “Network in network,” in
arXiv:1312.4400, 2013.

[33] J. W. Cooley and J. W. Tukey, “An algorithm for the machine cal-
culation of complex Fourier series,” Mathematics of Computation,
vol. 19, no. 90, pp. 297–301, 1965.

[34] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. ICML, Haifa, 2010.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. CVPR, Las Vegas, 2016.

[36] K. Ito, “The LJ Speech Dataset,” https://keithito.com/
LJ-Speech-Dataset, 2017.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. ICLR, San Diego, 2015.

[38] T. Salimans and D. P. Kingma, “Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural net-
works,” in Proc. NIPS, Barcelona, 2016.

229


