INTERSPEECH 2020
October 25-29, 2020, Shanghai, China

Fast and lightweight on-device TTS with Tacotron2 and LPCNet

Vadim Popov, Stanislav Kamenev, Mikhail Kudinov, Sergey Repyevsky, Tasnima Sadekova,
Vitalii Bushaev, Viladimir Kryzhanovskiy, Denis Parkhomenko

Huawei Technologies Co. Ltd., Russia

stanislav.kamenev@huawei.com

vadim.popov@huawei.com,

Abstract

We present a fast and lightweight on-device text-to-speech
system based on state-of-art methods of feature and speech gen-
eration i.e. Tacotron2 and LPCNet. We show that modifica-
tion of the basic pipeline combined with hardware-specific op-
timizations and extensive usage of parallelization enables run-
ning TTS service even on low-end devices with faster than real-
time waveform generation. Moreover, the system preserves
high quality of speech without noticeable degradation of Mean
Opinion Score compared to the non-optimized baseline. While
the system is mostly oriented on low-to-mid range hardware we
believe that it can also be used in any CPU-based environment.
Index Terms: on-device speech synthesis, recurrent neural
vocoders, TTS optimization

1. Introduction

Neural models have recently become a common solution for
Text-to-Speech synthesis since they can produce high-quality
speech at reasonable computational costs. State-of-the-art
results have been achieved by using attention-based models
such as Tacotron [1] for feature generation and autoregressive
WaveNet vocoder [2] for conditional waveform generation.

As long as Tacotron operated on speech frames and also
was capable of predicting several speech frames in one step
[1, 3], the speech generation module was considered as the main
computational bottleneck. The improvements of the original
autoregressive WaveNet vocoder were made in the three direc-
tions: 1) development of a non-autoregressive vocoder provid-
ing the same quality of speech [4, 5, 6]; 2) finding a lightweight
architecture of neural network for conditional speech generation
[7, 8]; 3) decreasing number of prediction steps for the given
target sample rate [7, 9, 10].

While several solutions referenced above [7, 8, 9, 10] were
claimed to be capable of faster-than-realtime on-device speech
generation the requirements to the hardware are still high and
can be met only on higher-end devices which are still too ex-
pensive for many people.

Curiously enough, although relatively complex schemes of
parallel waveform generation for recurrent and autoregressive
models have been proposed in [7] the simplest brute-force meth-
ods have not been extensively discussed in the literature, at least
to our knowledge. For example, the input mel-spectrogram can
be split into independent parts based on frame energy criterion
so each part can be processed by a separate copy of the vocoder.
Then the synthesized waves can be concatenated with or with-
out post-processing techniques (e.g. cross-fading [11]). Such
an approach though being used be practitioners (e.g. [12, 13])
is not normally referenced in literature even as a baseline.

In this paper, we combine various techniques of TTS model
optimization and parallelization which can be either hardware-
dependent or independent. Our solution is based on modi-

Copyright © 2020 ISCA

220

fied versions of two autoregressive neural architectures, namely
Tacotron2 [3] and LPCNet [8], and is capable of generating
high-quality speech. We show that this model is also efficient in
terms of speed and memory usage. An extensive human evalua-
tion conducted for four languages reveals that the overall quality
of the synthesized speech is high enough and the optimization
tricks we use do not lead to sound quality degradation.

The paper structure is as follows: in Section 2 we describe
design of the feature generation module based on Tacotron2;
in Section 3 various vocoder optimization techniques are dis-
cussed; in Section 4 human evaluation results are presented
along with efficiency measurement; we conclude in Section 5.

2. Feature generation module

As mentioned above, our feature generation module is based on
Tacotron2. Tacotron2 is a sequence-to-sequence neural archi-
tecture with attention [14] carrying out a transformation from
an input character sequence into an output mel-spectrogram.
Tacotron2 makes use of an autoregressive decoder implemented
as a 2-layer LSTM with location-sensitive attention [15] and
convolutional postnet module which was found critical for gen-
erating crisp mel-spectrograms. The integration of Tacotron2
and LPCNet suggested replacing output mel-spectrum fea-
tures [16] of the original Tacotron2 with the native features of
LPCNet i.e. 20-dimensional vector consisting of 18 Bark-scale
cepstral coefficients (BFCC) [17] and 2 pitch parameters (pe-
riod, correlation). We also found that predicting normalized
BFCCs made training of the feature generation model more sta-
ble so we chose the option of predicting normalized features
and adding a final denormalization layer.

The feature generation module and the vocoder can be ef-
fectively parallelized due to the big difference in their execution
times. The overall execution time thus becomes almost equal to
that of LPCNet. To facilitate this we fixed two computational
bottlenecks of the original architecture.

The first bottleneck was created by a high computational
cost of Tacotron2 decoder comprising a 2-layer LSTM with
1024 units. We chose to decrease the size of the LSTM by a
factor of 4. We should note though that for some languages
we had to increase the number of LSTM layers from 2 to 3 to
prevent quality degradation.

The second bottleneck was caused by a wide receptive field
of the postnet module. As far as the convolutions in the postnet
are not causal we have to wait until the number of frames pro-
cessed by the decoder matches the size of the receptive field. It
directly influences the first frame delay or FFD i.e. a time de-
lay between getting the character input and starting outputting
the sound. For a zero-padded sequence and a stack of 1d-
convolutions FFD is calculated as:

FFD=E+Dx*[R/2] +P+V, (1)

http://dx.doi.org/10.21437/Interspeech.2020-2169



where E is the encoder execution time, V' is the vocoder per
sample execution time, R is the width of the receptive field
of the convolution stack, D is the decoder per frame execution
time and P is the postnet per frame execution time.

The original postnet consists of 5 convolutions of shape
5x1 with stride 1, so R = 21. Itimplies a delay of £+11D+P
msec before the wave generation starts. To alleviate this prob-
lem we change widths of the convolution kernels to [5, 3, 3, 3]
thus reducing the receptive field to 11 and decreasing the wave
generation delay to £ + 6D + P. The encoder execution time
FE, in turn, is almost negligible compared to 6D so there is no
much use in decreasing it. However, we should note that for
the vanilla LPCNet Equation 1 is not completely true because
of the frame-rate subnet [8] so in our final design, we integrated
postnet of Tacotron2 and the frame-rate subnet of LPCNet into
a single module. The resulting frame-rate module carried out
the following function: 1) postnet transformation of Tacotron2;
2) BFCC denormalization and 3) frame-rate feature generation
of LPCNet.

Finally, to improve synthesis of long sentences we replace
location-sensitive attention with dynamic convolutional atten-
tion [18].

3. Vocoder parallelization

Our investigations were carried out for LPCNet [8] — an au-
toregressive vocoder based on recurrent neural networks but in
principle the methods described in this section should be ap-
plicable (probably with slight modifications) to other recurrent
vocoders, e.g. to WaveRNN [7].

In general, the main disadvantage of autoregressive
vocoders suitable for mobile devices is that they can’t enjoy
the benefits of parallel computations: their autoregressive na-
ture makes independent parallel generation difficult. Moreover,
such models are usually composed of small compact layers, so
using parallel computations for matrix operations also does not
make sense because the overhead on creating and synchroniz-
ing threads in this case is too high compared to the speedup gain
due to parallelization.

However, sometimes it is possible to synthesize some parts
of the speech signal in a parallel manner independently so that a
simple concatenation of the synthesized waves produces a good
record with no artifacts at the borders of the parts. We refer to
the frames that serve as such borders as splitting frames.

3.1. Splitting frames detection

If two adjacent words in a sentence are separated with a distinct
pause, the waveforms corresponding to these words can be con-
sidered approximately independent, so synthesizing these two
words in parallel should not lead to a loss in sound quality. Like-
wise, since speech samples that correspond to unvoiced sounds
are almost uncorrelated, parallel synthesis of speech parts sep-
arated with unvoiced frames is also possible. This simple intu-
ition is the basis of the energy-based criterion of splitting frame
detection.

LPCNet inputs are BFCCs [17], so applying inverse dis-
crete cosine transform to these coefficients results in an ap-
proximation of speech signal log-energy in the neighbourhood
of certain frequencies located uniformly on Bark scale. The
frames containing silence can be characterized by low overall
energy whereas frames corresponding to unvoiced sounds have
most of their energy located at high frequencies (see Figure 1).
Thus, frames at which a spectrogram can be divided into nearly

221

independent parts can be detected with the following energy-
based criterion: either (1) overall energy in a frame is less than
a threshold Bs;;, or (2) ratio of energy at high frequencies to
energy at low frequencies is greater than a threshold By .

Figure 1: Boxes on the spectrogram correspond to silence or
unvoiced sounds.

Though being quite simple and intuitive, the energy-based
approach to finding splitting frames requires manual tuning of
the thresholds Bs;; and Byn.. That is why we decided to try
another approach and to solve splitting frames detection task
with neural networks. We chose a compact architecture simi-
lar to LPCNet encoder: two 1D convolution layers with kernel
size 3, output channels number 32 and tanh activations are fol-
lowed by a fully-connected layer with 32 units and tanh activa-
tion and the last sigmoid layer. So, the inputs were composed of
frame-level acoustic features (BFCCs and 16-dimensional pitch
embedding) and the output was a single number i.e. the proba-
bility that splitting spectrogram at the current frame did not lead
to audible artifacts.

Below we reformulate the requirement not to introduce au-
dible artifacts in terms of the loss function. We start from an ob-
servation that splitting spectrogram at “wrong” frames always
results in one particular type of defects i.e. in a clicking sound
on that frame and in an apparent vertical stripe at the corre-
sponding segment of the spectrogram (see Figure 2). So, we can
detect clicks by comparing two spectrograms corresponding to
speech signal synthesized with and without parallelization. We
chose the following function for the measure of the perceived
click strength:

log2 EZ()Z)T

. 2
log E;(,Z)T
max @ —_—
i€ LNT log Estd

aryPOs = ax -
#(Spar; Ssta) ( i€HNT |og E;L

@)
where we denote spectrum at the analyzed frame by S, energy
at a certain frequency ¢ by E®  the set of low frequencies by
L, the set of high frequencies by H, the set of frequencies ¢ for

which log E;QT > log Ei?d > 1 by Z and subscripts par and

std stand for synthesis with and without parallelization corre-
spondingly.

Figure 2: Splitting frames corresponding to vowels produce
clicks (vertical stripes on the spectrogram).

There are a few points we need to make about Formula 2:
1) we divide frequency range into two sets £ and H because
we found that in some cases energy of the clicks is concentrated
either in the high or low part of the spectrum; 2) our approxima-
tion of log-energy obtained from BFCCs isn’t always accurate,
so we choose maximum to serve as robust aggregation function;
3) we square the numerator of the first term to put higher penalty
for low-frequency noise and decrease perceived strength of the



click; 4) we exclude all cases when the standard version pro-
duces higher energy sound so we consider only ratios exceed-
ing one; if no term satisfies this condition, the maximum is set
to zero.

The resulting loss function penalizes frames splitting at
which results in clicks and, on the other hand, encourages split-
ting at frames when no click is observed:

Loss(x) = pe(z) - () + (1 — po(2)) - C 3)
where x denotes the analyzed frame, py(x) is the probability
(given by the neural network with parameters 6) that this frame
can be used to divide spectrogram into parts synthesized inde-
pendently without loss in quality, u(z) is the measure of a click
(calculated by Equation 2) that appears if this frame is consid-
ered as splitting one and C' is some positive borderline value: if
the measure of a click u(x) is less than C, we regard it as “no
click”.

To train such a network we create a dataset consisting of
pairs of audio records synthesized with and without paralleliza-
tion. To generate audio with parallelization for this dataset we
allocate splitting frames at random. After the network is trained,
it is also possible to create a new dataset where splitting frames
are allocated in accordance with pg(x) rather than randomly
and to continue the training on the new dataset. However, we
found that such a training procedure that resembles imitation
learning [19] does not improve quality.

At test time, frames with pg(x) > 0.95 were considered for
splitting. Neural models found about 10% more splitting frames
than the energy-based algorithm for all languages we tested.

3.2. Cross-fading

Instead of detecting frames that split spectrogram into indepen-
dent parts so that the corresponding synthesized waveforms can
simply be concatenated without any post-processing, we can fo-
cus on improving the post-processing techniques that work well
for any choice of a splitting frame. This can be done with decent
quality if the segments synthesized in parallel are overlapped.

As a baseline we take linear cross-fading technique [11].
Assume that the vocoder is processing two segments in parallel
so that the first segment contains frames 1, .., k while the second
one contains frames k, k + 1, .. That is, two waves overlap in k-
th frame. Concatenating the first wave s and the second wave
s® with linear cross-fading means that in k-th frame samples
of the resulting wave s are given by:

“

where N is the number of samples in a frame. In our experi-
ments we took a; = i/N so that s fades out uniformly.

An ideal choice of coefficients in the linear combination (4)
is known to depend on correlation between s and 5@ (see
[11]). Intuitively, it is clear that for highly correlated signals
the quality of concatenation with cross-fading is less dependent
on the values of coefficients in Equation 4. In the limiting case
when s™) is equal to s the values of these coefficients do not
even matter once they sum to one. It suggests that cross-fading
quality can improve after applying a left shift to the second sig-
nal s® such that its correlation with s*) increases. This idea
is illustrated in Figure 3.

Thus, we consider linear cross-fading with shift:

si = (1— ai)sz(-l) + aisf), 1=0,.,N

w
m = arg min g \sﬁ)j — s
J=0,..,M 5=,

(%)

222

Before shift

After optimal shift

010 M

o075
0050
o025
0000

-0.100

0100
0075
0050
0025
0000

-0.025

-0.050

-0.075

-0.100

Figure 3: Unmodified waves (left) and the same waves but with
shift applied to one of them (right). Linear cross-fading works

8 100 120 140 160

better for the two waves on the right.

Table 1: A/B testing results.

8 100 120 140 160

Which is better? | Non-parallel Parallel Identical
EB-splitting 23.9% 21.5% 54.6%
NN-splitting 21.1% 19.4% 59.5%

XF with shift 14.4% 17.5% 68.1%

Which is better? W/o shift With shift | Identical
Cross-fading 7.3% 43.3% 49.4%

si = (1 - (%) )35” + (%) s? i=0,.,N (6)

where M is the maximum possible shift value and W is size
of the window used for calculation L1 distance between signals
(we found that minimizing L1 distance leads to the same quality
as maximizing correlation). We put M = W = N/2 in our
experiments. We also introduce additional parameter a: the
larger « is, the longer the first wave s does not fade out (high
cross-fading quality was observed for a € [1; 3]).

The code for splitting frames detection (both energy-
based and network-based methods) and synthesis with
linear cross-fading (both with and without shift) is avail-
able at https://github.com/1liljkdaw/LPCNet_
parallel/tree/code.

4. Performance evaluation

We performed subjective human evaluation tests on Amazon
Mechanical Turk. Four single-speaker datasets were used: we
trained models on male Italian and female English, French
and Spanish speakers. All the datasets are internal except the
English one which is LISpeech dataset [20]. A small por-
tion of audio records that were used in our experiments is
available at https://1iljkdaw.github.io/LPCNet_
parallel.

4.1. A/B testing

In order to check that the methods of vocoder parallelization
described in Section 3 do perform well we conducted a series
of A/B tests. In each of these tests the participants were pre-
sented with 25 pairs of recordings of the same sentence and
asked to choose which one they preferred in case they heard
any difference. In each pair the records were synthesized con-
ditioned on the same spectrogram since we did not want a small
variation in the Tacotron2 output to affect the result. The main
purpose of the tests was to ensure that the parallelization did
not lead to degradation of the sound quality. As we had several
approaches to vocoder parallelization we carried out separate
A/B tests for different system design choices. For the strategy
involving synthesis of non-overlapping segments we tested two
splitting frame detection methods i.e. energy-based and neural



Table 2: Mean Opinion Scores for ground truth records and speech synthesized with different methods.

Dataset | Duration Vocoder Ground Truth | Non-parallel | EB-splitting | NN-splitting | XF with shift
English | 24 hours | WaveRNN | 4.46 +0.17 | 4.08+0.20 | 4.15£0.22 — 4.22 +0.20
English | 24 hours LPCNet 3.98£0.12 3.74£0.10 | 3.78 £0.10 | 3.71+£0.11 3.75£0.11
Italian | 23 hours LPCNet 4.15+£0.14 3.45+£0.16 | 3.60£0.16 | 3.42+£0.26 | 3.56£0.19
French | 8 hours LPCNet 4.46 £0.10 3.83£0.17 | 3.86£0.16 | 3.88+£0.17 | 3.84£0.19
Spanish | 17 hours LPCNet 443£0.12 | 3.54+0.11 | 3.52+0.11 3.50£0.12 | 3.50+£0.18

network-based criteria (EB-splitting and NN-splitting respec-
tively). For the alternative strategy involving synthesis of over-
lapping segments we tested the cross-fading with shift as the
post-processing technique (XF with shift). In the latter case, we
allocated 2 splitting frames per second. Each pair in all tests
was evaluated by at least 20 listeners. The tests were performed
on English data only.

The results of these tests are presented in Table 1. In more
than half of cases people noticed no difference between parallel
and non-parallel versions. In the remaining cases the difference
between the presented methods was small. To obtain statisti-
cally significant results, we applied sign test [21] and concluded
that we can’t reject (at 95% confidence level) the hypothesis that
speech synthesized with the analyzed methods of parallelization
has the same quality as the one synthesized in a normal way.

We also performed another A/B test to show that the lin-
ear cross-fading with shift leads to better sound quality than the
same method without shift (XF w/o shift). Sign test applied to
the results of Table 1 allows us to reject the hypothesis that the
cross-fading without shift works at least as well as the one with
shift. When a splitting frame corresponds to a vowel, linear
cross-fading without shift leads to audible artifacts. In contrast
to the previous A/B test with overlapping segments, for this one
we allocated 10 splitting frames per second instead of 2 to un-
derline the mentioned problem and check if adding shift can fix
1t.

4.2. MOS evaluation

To evaluate the overall quality and naturalness of the speech
synthesized with our TTS system, we launched Mean Opinion
Score (MOS) evaluation for four languages. Additionally, we
trained Tacotron2 + WaveRNN system on English dataset sam-
pled at 22kHz to show that the vocoder optimization methods
described in Section 3 can be applied not only to LPCNet or
16kHz synthesis. For each test the TTS system produced no
less than 15 audio records.

We asked participants selected according to a geographic
criterion to estimate quality of these records on five-point Lik-
ert scale, i.e. to classify a record as “Bad” (1 point), “Poor” (2
points), “Fair” (3 points), “Good” (4 points) or “Excellent” (5
points). We also included ground truth recordings and special
noisy recordings in the tests in order to keep track of the atten-
tion of the assessors and prevent random answers. The assessors
who gave less than 3 points to the ground truth records or more
than 3 points to the noisy records were excluded from the ex-
periment. As in A/B tests, each piece of audio was evaluated by
at least 20 people.

Table 2 demonstrates that all optimization tricks referenced
there perform well enough in general and show the same sound
quality as TTS with non-parallel vocoder in particular. Note
that in case of WaveRNN we used 22kHz audio which explains

223

Table 3: Vocoder parallelization efficiency.

1 thread 2 threads 3 threads
FFD | RTF | FFD | RTF | FFD | RTF
MT6762 | 323 | 1.64 | 345 | 1.07 | 352 | 0.89
Kirin950 | 202 | 1.18 | 213 | 0.75 | 243 | 0.67
Kirin710 | 170 | 1.09 | 184 | 0.69 | 191 | 0.56

the difference between ground truth MOS in English tests with
LPCNet and WaveRNN.

4.3. Efficiency evaluation

To test overall performance we implemented Tacotron2 and
LPCNet (with splitting frames detection by energy-based
criterion) on several mobile devices with 8 core ARM
processors: Mediatek MT6762 (4x2.0GHz Cortex-A53 +
4x1.5GHz Cortex-A53), Kirin950 (4x2.3GHz Cortex-A72 +
4x1.8GHz Cortex-A53) and Kirin710 (4x2.2GHz Cortex-A73
+ 4x1.7GHz Cortex-A53).

The whole TTS application requires only 12.5Mb of stor-
age (11.4Mb for Tacotron2 and 1.1Mb for LPCNet). All
weights are stored as 8-bit numbers. As for the speed, we re-
port average values of Real Time Factor (RTF) and First Frame
Delay (FFD, see Section 2) in Table 3. RTF is defined as the
time it takes to synthesize some piece of an audio divided by its
duration. FFD is measured in milliseconds.

Table 3 shows that using 3 threads for parallel vocoder gives
almost 2x speedup resulting in faster than real-time synthesis.
At the same time, independent generation of non-overlapping
segments introduces an overhead of approximately 5 msec on
the detection of splitting frames. Moreover, we should note that
as the splitting time is undefined the RTF can vary from phrase
to phrase.

5. Conclusion

In this work we have presented a text-to-speech system that
is suitable for low-to-mid range mobile devices. Optimiza-
tion techniques that we describe allow this system to run on
low-end hardware without any loss in quality. Besides, we in-
vestigated several parallelization techniques applicable to au-
toregressive vocoders and showed that these techniques did not
have any negative impact on the synthesized speech despite the
fact that parallelization breaks the correlation between speech
samples. Further research can be focused on the development
of lightweight TTS vocoders capable of generating any speech
segment without splitting frame detection or segment overlap.



[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

6. References

Y. Wang, R. Skerry-Ryan, D. Stanton et al., “Tacotron: Towards
end-to-end speech synthesis,” ArXiv, 2017. [Online]. Available:
https://arxiv.org/abs/1703.10135

A. van den Oord, S. Dieleman, H. Zen et al., “WaveNet: A gen-
erative model for raw audio,” in 9th ISCA Speech Synthesis Work-
shop, 2016, pp. 125-125.

J. Shen, R. Pang, R. J. Weiss et al., “Natural TTS synthesis by
conditioning WaveNet on mel spectrogram predictions,” in 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2018. 1EEE, April 2018, pp. 4779-4783.

A. van den Oord, Y. Li, I. Babuschkin et al., ‘“Parallel WaveNet:
Fast high-fidelity speech synthesis,” in Proceedings of the 35th
International Conference on Machine Learning, vol. 80. PMLR,
2018, pp. 3918-3926.

W. Ping, K. Peng, and J. Chen, “Clarinet: Parallel wave
generation in end-to-end text-to-speech,” ArXiv, 2018. [Online].
Available: http://arxiv.org/abs/1807.07281

R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in 2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
ICASSP 2019. 1EEE, May 2019, pp. 3617-3621.

N. Kalchbrenner, E. Elsen, K. Simonyan et al., “Efficient neural
audio synthesis,” in Proceedings of the 35th International Confer-
ence on Machine Learning, vol. 80. PMLR, 10-15 Jul 2018, pp.
2410-2419.

J.-M. Valin and J. Skoglund, “LPCNet: Improving neural speech
synthesis through linear prediction,” in 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP
2019. 1IEEE, May 2019, pp. 5891-5895.

Z. Jin, A. Finkelstein, G. J. Mysore, and J. Lu, “FFTNet: A real-
time speaker-dependent neural vocoder,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
ICASSP 2018. IEEE, 2018, pp. 2251-2255.

V. Popov, M. Kudinov, and T. Sadekova, “Gaussian LPCNet for
multisample speech synthesis,” in 2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP
2020. 1EEE, 2020.

M. Fink, M. Holters, and U. Zolzer, “Signal-matched power-
complementary cross-fading and dry-wet mixing,” in Proceed-
ings of the 19th International Conference on Digital Audio Effects
(DAFx-16), September 2016, pp. 109-112.

[Online]. Available: https://github.com/fatchord/WaveRNN/
issues/9

[Online].  Available: https://ai.googleblog.com/2020/04/
improving-audio-quality-in-duo-with.html

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” in 3rd
International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online].
Available: http://arxiv.org/abs/1409.0473

J. Chorowski, D. Bahdanau, D. Serdyuk ez al., “Attention-based
models for speech recognition,” in Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems -
Volume 1. Cambridge, MA, USA: MIT Press, 2015, p. 577-585.

S. B. Davis and P. Mermelstein, “Comparison of parametric repre-
sentation for monosyllabic word recognition in continuously spo-
ken sentences,” IEEE Transactions on Acoustics, Speech and Sig-
nal Processing, vol. 28, no. 4, pp. 357-366, 1980.

B. Moore, An introduction to the psychology of hearing, Sth ed.
Brill, 2012.

E. Battenberg, R. J. Skerry-Ryan, S. Mariooryad et al., “Location-
relative attention mechanisms for robust long-form speech synthe-
sis,” ArXiv, vol. abs/1910.10288, 2019.

224

[19] T. Osa, J. Pajarinen, G. Neumann et al., “An algorithmic perspec-
tive on imitation learning,” Foundations and Trends in Robotics,
vol. 7, no. 1-2, p. 1-179, 2018.

[20] K. Ito, “The LJ Speech Dataset,” 2017.

[21] W. Conover, Practical nonparametric statistics, 3rd ed.  New
York, NY [u.a.]: Wiley, 1999.



