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Abstract
This paper proposes new blind signal processing techniques for
optimizing a multi-input multi-output (MIMO) convolutional
beamformer (CBF) in a computationally efficient way to simul-
taneously perform dereverberation and source separation. For
effective CBF optimization, a conventional technique factor-
izes it into a multiple-target weighted prediction error (WPE)
based dereverberation filter and a separation matrix. However,
this technique requires the calculation of a huge spatio-temporal
covariance matrix that reflects the statistics of all the sources,
which makes the computational cost very high. For computa-
tionally efficient optimization, this paper introduces two tech-
niques: one that decomposes the huge covariance matrix into
ones for individual sources, and another that decomposes the
CBF into sub-filters for estimating individual sources. Both
techniques effectively and substantively reduce the size of the
covariance matrices that must calculated, and allow us to greatly
reduce the computational cost without loss of optimality.
Index Terms: Blind source separation, dereverberation, auto-
matic speech recognition

1. Introduction
When a speech signal is captured by distant microphones, e.g.,
in a conference room, it often contains reverberation, diffuse
noise, and voices of extraneous speakers. These components
are detrimental to the intelligibility of the captured speech and
often cause serious degradation in many speech applications,
such as Automatic Speech Recognition (ASR).

Blind signal processing minimizes the aforementioned
detrimental effects in the acquired signals without prior knowl-
edge of the sources or the room acoustics. For reduction of
extraneous speakers’ voices, a number of techniques have been
developed for blind source separation (BSS), including inde-
pendent component analysis [1, 2], independent vector analysis
[3, 4, 5], and spatial clustering-based time-frequency masking
and beamforming [6, 7, 8]. It has also been empirically con-
firmed that BSS can perform denoising [9, 10]. For blind dere-
verberation (BDR), a Weighted Prediction Error minimization
(WPE)-based technique [11, 12, 13] has been actively studied
as an effective approach.

Techniques for jointly optimizing BSS and BDR based on
a multi-input multi-output (MIMO) convolutional beamformer
(CBF) have also been investigated [14, 15, 16, 17, 18, 19, 20,
21, 22]. For example, with certain techniques [16, 18, 19], a
CBF is factorized into a multiple-target weighted prediction er-
ror (WPE) dereverberation filter and a separation matrix and
jointly optimized. This approach, however, requires the calcu-
lation of a huge spatio-temporal covariance matrix that reflects
the statistics of all the sources. This makes the computational
cost very high and has inhibited wider use of these techniques.

To achieve computationally efficient optimization, we rein-
troduce two techniques that we have recently proposed to op-

timize a (non-blind) mask-based CBF [23, 24]. One is source-
wise covariance decomposition, which decomposes a huge co-
variance matrix into smaller ones that correspond to individual
sources, and the other is source-wise CBF factorization, which
factorizes a CBF into a set of single-target WPE filters that cor-
respond to individual sources and a separation matrix. We show
that each technique can accomplish computationally much more
efficient joint optimization without loss of optimality based on
spatio-temporal covariance matrices that are calculated sepa-
rately for individual sources.

In the remainder of this paper, after a brief overview on re-
lated work in section 2, we describe the problem formulation
and a conventional joint optimization technique in sections 3
and 4. Our proposed techniques are presented in section 5. Fi-
nally, experiments and concluding remarks are given in sections
6 and 7.

2. Related work
The optimization techniques used in this paper were first pro-
posed for (non-blind) optimization of a CBF under a condition
where the time-frequency masks of the target signals are given
or can be estimated [24]. We newly apply these techniques to
blind signal processing and experimentally examine their effec-
tiveness in this paper.

To avoid the calculation of a huge covariance matrix for the
efficient optimization of a CBF, a different scheme has also been
proposed [21, 25]. With it, a CBF is optimized without being
factorized into WPE filters and a separation matrix. In contrast,
the techniques for factorizing a CBF proposed in our paper en-
able more flexible control of the optimization. For example,
computational efficiency can be further enhanced by adopting
different iteration schemes to update BSS and BDR, as will be
discussed in our experiments.

Note that the joint optimization problems solved in this pa-
per and previous articles [16, 19, 21] are equivalent because
they are based on the same CBF and optimization criteria in the
same family. A major difference is how the CBF is parameter-
ized. This results in different optimization algorithms.

3. Problem formulation
Suppose that N sources are captured by M microphones, and
that the captured signals can be modeled at each time t and fre-
quency f in the short-time Fourier transformation (STFT) do-
main:

xt,f =

LA−1∑
τ=0

Aτ,fst−τ,f , (1)

where st,f = [s
(1)
t,f , . . . , s

(N)
t,f ]> ∈ CN×1 and xt,f =

[x1,t,f , . . . , xM,t,f ]> ∈ CM×1 are the vectors containing
source and microphone signals, where (·)> denotes a non-
conjugate transpose, Aτ,f ∈ CM×N for τ = 0, . . . , LA − 1
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is a convolutional transfer function matrix from the sources to
the microphones. This paper assumes M = N , which is a de-
termined case. To perform simultaneous dereverberation and
source separation, we employ a CBF:

yt,f =

L−1∑
τ=0

WH
τ,fxt−τ,f . (2)

where (·)H denotes a conjugate transpose, and Wτ,f ∈ CM×N
for τ = 0, . . . , L − 1 is a coefficient matrix of the CBF. Next
we model each source s(i)

t,f by a zero-mean complex Gaussian

distribution with a time-frequency dependent variance λ(i)
t,f . In

addition, we assume that s(n)
t,f and s(n′)

t′,f ′ are mutually indepen-
dent for (t, f, n) 6= (t′, f ′, n′), and that there is a certain set of
coefficients ΘW = {Wτ,f} that makes yt,f = st,f . Then the
log likelihood function can be written:

L(θ) = −
∑
t,f,n

(
log λ

(n)
t,f +

|y(n)
t,f |

2

λ
(n)
t,f

)
+2T

∑
f

log | det W0,f |,

(3)
where T is the total number of time frames, θ = {ΘW,Θλ},
and Θλ = {λ(n)

t,f }. A CBF can be optimized by estimating θ
that maximizes the above log likelihood function.

Note that some of the assumptions introduced in the above
formulation are not accurate. For example, the existence of the
CBF that exactly recovers the sources is guaranteed only with
over-determined cases (M > N ) [26]. This means that the
likelihood function is logical only in an approximate sense. In
addition, s(n)

t,f inherently has temporal correlation within each
short time duration. A technique is often introduced to prevent
the inherent correlation from being decorrelated by the CBF,
where we set the dereverberation goal to reduce only the late
reverberation without changing the direct signal and the early
reflections. This is simply done by introducing prediction delay
D [11, 27] into the CBF:

yt,f = WH
0,fxt,f +

L−1∑
τ=D

WH
τ,fxt−τ,f . (4)

4. Conventional optimization method
Conventionally, researchers have derived techniques for opti-
mizing a CBF based on a way of factorizing it [16, 19], referred
to in this paper as source-packed factorization [24].

4.1. Source-packed CBF factorization

With this factorization, a CBF is factorized into two sub-filters:

zt,f = xt,f −GH
fxt,f , (5)

yt,f = QH
fzt,f . (6)

The first sub-filter in Eq. (5), which is a multiple-target
WPE filter, yields dereverberated sound mixture zt,f from
current observation xt,f using a prediction matrix Gf ∈
CM(L−D)×M and a vector containing past observation xt,f =

[x>t−D, . . . ,x
>
t−L+1,f ]> ∈ CM(L−D)×1. The second sub-filter

in Eq. (6) is a separation matrix Qf ∈ CM×N that sepa-
rates dereverberated sound mixture zt,f ∈ CM×1 into indi-
vidual sources. The pair of sub-filters (5) and (6) is equiva-
lent to Eq. (4) when they satisfy Qf = W0,f and GfQf =

−
[
(WD,f )> , . . . , (WL−1,f )>

]>
. This is called source-

packed factorization because the sources in the mixture are not
distinguished in the output of the WPE filter.

4.2. Optimization with source-packed CBF factorization

Since no closed form solutions are known for the maximization
of the likelihood function, conventional techniques utilize iter-
ative estimation based on a coordinate ascent method [19]. It is
composed of three estimation steps:

Θ̂λ ← argmax
Θλ

L(Θλ, Θ̂Q, Θ̂G), (7)

Θ̂Q ← argmax
ΘQ

L(Θ̂λ,ΘQ, Θ̂G), (8)

Θ̂G ← argmax
ΘG

L(Θ̂λ, Θ̂Q,ΘG), (9)

where ΘQ = {Qf}, ΘG = {Gf}, and ‘̂·’ denotes an esti-
mated variable.

Due to space limitations, we only show the estimation step
for ΘG. Let gm,f be the mth column of Gf and gf =

[g>1,f , . . . ,g
>
M,f ]>. ΘG can be updated:

ĝf = Ψ+
f ψf , (10)

Ψf =
1

T

∑
t

X
H
t,fΦt,fXt,f ∈ CM

2(L−∆)×M2(L−∆), (11)

ψf =
1

T

∑
t

X
H
t,fΦt,fxt,f ∈ CM

2(L−∆)×1, (12)

where Xt,f = IM ⊗ x>t,f ∈ CM×M
2(L−∆) letting ⊗ denote

a Kronecker product, Φt,f =
∑N
n=1 q̂

(n)
f

(
q̂

(n)
f

)H
/λ̂

(n)
t,f ∈

CM×M letting q̂
(n)
f be the nth column of Q̂f , and (·)+ is the

Moore-Penrose pseudo-inverse.
In the above update, Ψf is the spatio-temporal covariance

matrix reflecting the statistics of all the sources. Because Ψf is
huge, its calculation and its inverse require high computational
cost. This is the problem with the conventional method. In the
following, we propose techniques to reduce the cost.

5. Proposed optimization method
Two techniques have been proposed to reduce the computa-
tional cost of optimizing a mask-based CBF [24]: source-wise
covariance decomposition and the source-wise CBF factoriza-
tion. Below we apply these techniques to blind CBF estimation.

5.1. Source-wise covariance decomposition

By carefully rewriting Eqs. (11) and (12), they can be strictly
decomposed into terms for individual sources [24]:

Ψf =

N∑
n=1

(
q̂

(n)
f

(
q̂

(n)
f

)H
⊗
(
R

(n)
x,f

)>)
, (13)

ψf =

N∑
n=1

(
q̂

(n)
f ⊗

(
P

(n)
x,f q̂

(n)
f

)∗)
, (14)

where ()∗ denotes a complex conjugate, and R
(n)
x,f and P

(n)
x,f are

respectively a spatio-temporal covariance matrix and a vector of
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the nth source:

R
(n)
x,f =

1

T

∑
t

xt,fx
H
t,f

λ̂
(n)
t,f

∈ CM(L−D)×M(L−D), (15)

P
(n)
x,f =

1

T

∑
t

xt,fx
H
t,f

λ̂
(n)
t,f

∈ CM(L−D)×M . (16)

In Eqs. (13) and (14), the majority of the calculation is derived
from R

(i)
x,f . Because the matrix is much smaller than Ψf , we

can greatly reduce the computing cost with this modification in
comparison with the direct calculation of Eqs. (11) and (12).
Although we still need to calculate the inverse of huge matrix
Ψf even with this modification, the cost is relatively small com-
pared with the direct calculation of Ψf .

5.2. Source-wise CBF factorization

With source-wise factorization, the CBF in Eq. (4) is first de-
composed into a set of CBFs, each of which estimates each
source independently:

y
(n)
t,f =

(
w

(n)
0,f

)H
xt,f +

L−1∑
τ=D

(
w

(n)
τ,f

)H
xt−τ,f , (17)

where w
(n)
τ,f ∈ CM×1 for τ = 0, D, . . . , L − 1 is the nth col-

umn of Wτ,f . Each CBF is then factorized into two sub-filters:

z
(n)
t,f = xt,f −

(
G

(n)
f

)H
xt,f , (18)

y
(n)
t,f =

(
q

(n)
f

)H
z

(n)
t,f . (19)

The first sub-filter, which is a single-target WPE filter with
a prediction matrix G

(n)
f ∈ CM(L−D)×M , dereverber-

ates the nth source. The second sub-filter, which is a
beamformer q

(n)
f ∈ CM×N , extracts the nth source sig-

nal. The pair of sub-filters (18) and (19) is equivalent to
Eq. (17) when they satisfy q

(n)
f = w

(n)
0,f and G

(n)
f q

(n)
f =

−
[(

w
(n)
D,f

)>
, . . . ,

(
w

(n)
L−1,f

)>]>
. This is called source-

wise factorization, which is different from source-packed fac-
torization in that the prediction matrix and the output of the
WPE filter are separately estimated for each source.

5.3. Optimization with source-wise CBF factorization

The optimization of the CBFs is conducted based on the coordi-
nate descent method in the same way as source-packed factor-
ization except that we can separately update prediction matrices
G

(n)
f for n = 1, . . . , N one by one.

5.3.1. Update of ΘG

By fixing Θλ and ΘQ at their previously updated values, the
likelihood function for estimating ΘG can be rewritten, disre-
garding constant terms [24]:

L(ΘG) = −
∑
f,n

∥∥∥∥(G
(n)
f −

(
R

(n)
x,f

)−1

P
(n)
x,f

)
q̂

(n)
f

∥∥∥∥2

R
(n)
x,f

,

(20)

where ‖x‖2R = xHRx. Interestingly, Eq. (20) can be maxi-
mized, not dependent on q̂

(n)
f , by updating Ĝ

(n)
f as

Ĝ
(n)
f ←

(
R

(n)
x,f

)−1

P
(n)
x,f . (21)

The above update equation is identical to that of the conven-
tional WPE filter optimization, except that λ̂(n)

t,f is obtained not
by the variance of the WPE output but by the beamformer out-
put (section 5.3.2).

In the above equation, since R
(n)
x,f can be much smaller than

that of Ψf , the computational cost for calculating R
(n)
x,f and its

inverse can be very small. This is an advantage of source-wise
factorization over conventional source-packed factorization.

5.3.2. Update of ΘQ and Θλ

Methods for updating ΘQ and Θλ can be derived in the same
way as those for the conventional techniques.

To update ΘQ and by fixing Θλ and ΘG, the likelihood
function can be rewritten, disregarding constant terms:

L(ΘQ) = −
∑
f,n

(
q

(n)
f

)H
Σ

(n)
z,fq

(n)
f + 2T

∑
f

log |det Qf |,

where Σ
(n)
z,f = 1

T

∑
t z

(n)
t,f

(
z

(n)
t,f

)H
/λ̂

(n)
t,f . According to the

idea of Iterative Projection (IP) [5], a solution that maximizes
the above function can be obtained by alternately iterating the
following updates for each source:

q̂
(n)
f ←

(
Q̂H
fΣ

(n)
z,f

)−1

en, (22)

q̂
(n)
f ←

((
q̂

(n)
f

)H
Σ

(n)
z,f q̂

(n)
f

)−1/2

q̂
(n)
f , (23)

where en is the nth column of an identity matrix IN ∈ RN×N .
The likelihood function for the update of Θλ, on the other

hand, can be rewritten:

L(Θλ) = −
∑
t,f,n

(
log λ

(n)
t,f +

|y(n)
t,f |

2

λ
(n)
t,f

)
, (24)

and the solution that maximizes the function can be obtained
simply as λ̂(n)

t,f ← |y
(n)
t,f |

2. This solution, however, contains per-
mutation ambiguity, that is, separation is done independently at
each frequency, and the separated sources need to be associated
with each other over different frequencies. Several approaches
have been proposed to solve this problem [3, 4, 6, 28]. In this
paper, we adopt a technique used for Independent Vector Anal-
ysis (IVA) through which λ(n)

t,f is assumed to be independent of
the frequency for each source n. With this technique and by
dropping the frequency indices from λ

(n)
t,f , it is updated:

λ̂
(n)
t ← 1

F

F−1∑
f=0

|y(n)
t,f |

2 (25)

where F is the number of frequency bins.

6. Experiments
This section experimentally evaluates the performance of our
proposed techniques in terms of computational complexity and
ASR performance improvement.

6.1. Dataset, evaluation metrics, and methods compared

For our evaluation, we prepared a set of noisy reverberant
speech mixtures (REVERB-MIX) using the REVERB Chal-
lenge dataset (REVERB) [29]. Each utterance in REVERB
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Table 1: Computing time required for 10 WPE iterations and
100 IVA iterations on a mixture utterance with a 9.44 s length.
Computing times were measured on a Matlab interpreter by
elapsed time.

Method Time (s)
IVA (w/o WPE) 32.5
WPE+IVA (not jointly optimized) 34.0
Conventional CBF (jointly optimized) 306.1
CovDecomp (proposed) 42.9
SWFact (proposed) 44.3

Table 2: WER (%) of enhanced speech signals for RealData
in REVERB-MIX with varying estimation iterations: Without
enhancement, WER was 62.49 %.

Method #iterations of IVA part
40 80 120 160 200

IVA 40.08 38.33 37.41 37.21 37.55

WPE+IVA 32.13 30.21 30.64 30.63 30.98
CovDecomp 31.64 29.97 29.72 29.83 29.48
SWFact 30.96 29.59 29.72 29.63 29.15

contains a single reverberant speech with moderate stationary
diffuse noise. For generating a set of test data, we mixed two
utterances extracted from REVERB, one from its development
set (Dev set) and the other from its evaluation set (Eval set),
so that each pair of mixed utterances was recorded in the same
room, by the same microphone array and under the same con-
dition (near or far, RealData or SimData). We categorized the
test data by the original categories of the data in REVERB (e.g.,
SimData or RealData). We created an identical number of mix-
tures in the test data as in the REVERB Eval set, and each utter-
ance in the REVERB Eval set was contained in either one of the
mixtures in the test data. Furthermore, the length of each mix-
ture in the test data was set the same as that of the corresponding
utterance in the REVERB Eval set.

In the experiments, we estimated three source signals from
each mixture, assuming that two of them correspond to the
speech signals and the other corresponds to the diffuse noise,
and evaluated only one of the speech signals corresponding to
the REVERB Eval set. We selected the signal to be evaluated
based on the correlation between the estimated signals and the
original signal in the REVERB Eval set. As the evaluation met-
ric, we adopted the ASR performance and used a baseline ASR
system for REVERB that was developed using Kaldi [30]. This
system was composed of a TDNN acoustic model trained using
a lattice-free MMI and online i-vector extraction, and a trigram
language model. They were trained on the REVERB training
set.

We compared our two proposed techniques, i.e., CBF
with our proposed covariance decomposition (CovDecomp) and
CBF with our proposed source-wise factorization (SWFact),
with three conventional methods: CBF with a conventional joint
optimization scheme (Conventional CBF), a cascade configura-
tion of WPE followed by IVA (WPE+IVA), and an IVA w/o
WPE. For all the methods, we also applied permutation re-
alignment post-processing [6] because it consistently improved
the WERs. We set the frame length and the shift at 128 and 32

ms for the IVA and 64 and 16 ms for the other methods based
on the settings that achieved the best WERs for the respective
methods. A Hann window was used for the short-time analysis.
The sampling frequency was 16 kHz and M = 3 microphones
were used for all the experiments. For the WPE, the prediction
delay was set at D = 2 and the prediction filter lengths were
respectively set at L = 10, 8, and 4 for frequency ranges of 0 to
0.8, 0.8 to 1.5, and 1.5 to 8 kHz.

In our preliminary experiments, since WPE converged
much faster than IVA within the iterative optimization frame-
work, we set the iteration numbers of WPE 10 times smaller
than those of IVA for all the experiments. For example, we up-
dated WPE once every 10 IVA updates in the proposed methods.
This iteration scheme is advantageous for making the joint op-
timization computationally more efficient because the WPE up-
dates are computationally more demanding than those for IVA.

6.2. Evaluation results

Table 1 compares the computing times measured on a Matlab
interpreter by the elapsed time for processing a mixture utter-
ance with a 9.44 s length. Both proposed techniques greatly re-
duced the computing time in comparison with the conventional
CBF. When compared with WPE+IVA, the proposed techniques
increased the computational cost, although not very much. Note
that the difference between IVA (w/o WPE) and WPE+IVA was
small because we adopted a longer analysis window for IVA
(128 ms) than those for the others (64 ms) so that IVA can
achieve its best WER.

Table 2 shows the WERs of the enhanced speech signals
obtained using different enhancement methods for RealData in
REVERB-MIX. In the experiment, we skipped the evaluation
of the conventional CBF because it should be identical to Cov-
Decomp (proposed). As shown in the table, our two proposed
methods effectively reduced the WERs in comparison with IVA
and WPE+IVA. When we compared the two proposed methods,
SWFact slightly outperformed CovDecomp. This is probably
because the WPE update does not depend on q̂(n)

f with SWFact
(Eq. (21)), which might work advantageously for slightly speed-
ing up the convergence.

7. Concluding remarks
This paper presented two techniques for optimizing a CBF in a
computationally efficient way to jointly perform BDR and BSS.
One is source-wise covariance decomposition, which provided
a computationally efficient way for calculating a huge spatio-
temporal covariance matrix that reflects the statistics of all the
sources. The other is source-wise CBF factorization, which al-
lows us to skip the calculation of a huge matrix by introducing
a new factorization scheme to the CBF optimization. In exper-
iments, we further introduced a computationally efficient iter-
ative optimization scheme, where we updated WPE much less
frequently than IVA. Our experiments showed that the proposed
techniques greatly reduced the computational cost in compar-
ison with the conventional CBF joint optimization technique
without loss of effectiveness.
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