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Abstract
State-of-the-art spoken language identification (LID) systems,
which are based on end-to-end deep neural networks, have
shown remarkable success not only in discriminating between
distant languages but also between closely-related languages or
even different spoken varieties of the same language. However,
it is still unclear to what extent neural LID models generalize
to speech samples with different acoustic conditions due to do-
main shift. In this paper, we present a set of experiments to in-
vestigate the impact of domain mismatch on the performance of
neural LID systems for a subset of six Slavic languages across
two domains (read speech and radio broadcast) and examine
two low-level signal descriptors (spectral and cepstral features)
for this task. Our experiments show that (1) out-of-domain
speech samples severely hinder the performance of neural LID
models, and (2) while both spectral and cepstral features show
comparable performance within-domain, spectral features show
more robustness under domain mismatch. Moreover, we apply
unsupervised domain adaptation to minimize the discrepancy
between the two domains in our study. We achieve relative ac-
curacy improvements that range from 9% to 77% depending on
the diversity of acoustic conditions in the source domain.
Index Terms: spoken language identification, Slavic lan-
guages, deep neural networks, unsupervised domain adaptation

1. Introduction
Spoken language identification, henceforth LID, is the problem
of determining the identity of the language in a spoken utter-
ance [1]. In today’s globalized world, LID systems can facilitate
a wide range of cross-lingual speech and communication tech-
nologies such as spoken language translation [2, 3, 4] and multi-
lingual spoken document retrieval [5]. Furthermore, LID-aware
transfer of language resources has been shown to be effective
for multilingual ASR in low-resource settings [6, 7, 8, 9].

Earlier work has addressed the LID task using the so-
called phonotactic approach. In this paradigm, the acoustic
signal is first transduced into a sequence of discrete symbols
(e.g., phones), then probabilistic models are utilized to ob-
tain language likelihoods [10, 11]. This approach has been
outperformed by acoustic approaches that are based on Gaus-
sian Mixture Models (GMMs) and the i-vector framework
which has been applied to speaker and language identification
[12, 13, 14, 15]. Currently, end-to-end deep neural networks
(DNNs) are predominant for LID and outperform GMMs, espe-
cially for short utterances [16, 17, 18, 19, 20].

The findings of the popular language guessing game, the
Great Language Game [21], have shown that discriminating be-
tween closely-related languages is a difficult task for humans.
On the other hand, neural LID models have shown striking

performance discriminating between spoken varieties of Arabic
[22, 23, 18], Slavic languages [16], and languages in accented
speech samples from multilingual speakers [24]. For instance,
the best neural LID model in [16] has reported an error rate as
low as 1.2% when discriminating between 11 Slavic languages.
Generally speaking, the impressive performance of DNN-based
LID reported in the literature gives the impression that LID is
almost a solved problem.

However, previous works have developed their models us-
ing disjoint splits of the same dataset where the training and
evaluation samples have similar, if not identical, acoustic con-
ditions (i.e., same domain). The impact of dataset-bias [25] on
LID robustness has not yet been investigated with a systematic
evaluation across datasets. In this paper we aim to fill this gap
and focus on the challenging case of LID for short utterances
of related languages (i.e., Slavic languages) in a cross-domain
setting. We investigate the following questions:

• RQ1 To what degree do neural LID models for related
languages generalize to another domain with different
acoustic conditions?

• RQ2 Are different low-level speech features equally
robust under domain mismatch?

• RQ3 Can we adapt LID models to a new domain with-
out using labelled data in the new domain? If yes, what
are the factors that affect the adaptability of the model?

To address these research questions, we conduct a series of LID
experiments with datasets from two domains: (1) Read speech
recordings from the Slavic subset of the GlobalPhone speech
database [26], and (2) Slavic broadcast recordings collected and
distributed in [16, 27] for LID (RQ1). We also compare the per-
formance of spectral (MFSCs) and cepstral (MFCCs) speech
features within- and across-domain (RQ2). Finally, we apply
adversarial domain confusion [28] to adapt our model to a tar-
get domain, analyze predictions from the adapted model, and
visualize its representations compared to the baseline (RQ3).

2. LID with Deep Neural Networks
2.1. Problem Definition

We define the LID task as a discriminative sequence classifica-
tion problem. First, a variable-length utterance is transformed
by an acoustic front-end into a sequence of acoustic observa-
tions X = (x1, . . . ,xT ), where xt ∈ Rk is a low-level feature
vector at timestep t. Given a sequence X, the goal is to pre-
dict the spoken language ŷ. Using a deep neural network as a
classification model, the LID problem can be defined as

ŷ = arg max
y∈Y

P (y | X; θ) (1)
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where Y is a finite set of languages, θ is the model’s parameters
learned in a supervised approach, and P (y|X;θ) represents a
posterior probability of the language label y.

2.2. LID Model Overview

Our LID model consists of a 1D 3-layer convolutional network
followed by 2-layer fully-connected feed-forward network as
schematized in Fig. 1(a). We refer to the convolutional block
as a high-level feature extractor Gf that transforms the input
sequence X into a D-dimensional feature vector f ∈ RD , i.e.
f = Gf (X;θf ). Then, the feed-forward layers transform f

into a logit vector ŷ ∈ R|Y| via a series of non-linear transfor-
mations, i.e. ŷ = Gy(f ;θy), followed by a softmax function
that maps ŷ into a probability distribution over the language
space. We refer to the fully-connected block of the model Gy

as a language classifier. The parameters of the network θf and
θy are learned jointly in an end-to-end approach given a dataset
DS = {(Xi, yi)}NS

i=1 of NS labelled samples in one domain.
The objective function is to minimize

J(θf ,θy) =
∑

(Xi,yi)∈DS

Ly

(
Gy

(
Gf (Xi;θf );θy

)
, yi
)

(2)

where Ly is the loss of the language classifier.

2.3. Domain Adaptive LID

In this paper, we explore a well-established domain adaptation
technique that has been successfully applied to many vision
and speech recognition problems [28, 29, 30]. This technique
aims to minimize the discrepancy between two domains given a
dataset DT = {Xi}NT

i=1 of NT unlabelled samples in the target
domain, in addition to the source labelled samples DS .

To improve the LID model’s out-of-domain generalization,
the feature representations emerging from the model should be
both language-discriminative and domain-invariant. This ob-
jective can be achieved if the model is encouraged during train-
ing to build up representations that are good predictors of the
spoken language but do not encode domain-related information.
To this end, a fully-connected feed-forward block Gd is added
to the network to predict the domain given f (see Fig. 1(b)).
We view Gd as a domain classifier with a separate set of pa-
rameters θd which are learned by exploiting the domain labels
of source and target samples. That is, each training sample in
the source domain (Xi, yi) is augmented with a domain label
di = 0, while each training sample in the target domain Xj is
augmented with a domain label dj = 1. We seek the parameters
θd that minimize the loss of the domain classifier. On the other
hand, the feature extractor Gf is trained such that f is uninfor-
mative for the domain classifier. Thus, we seek the parameters
θf that maximize the domain classifier loss. This procedure
is an instance of adversarial learning where different blocks in
the network are trained with competing objectives. The overall
objective function is to minimize

J(θf ,θy,θd) =
∑

(Xi,yi)∈DS

Ly

(
Gy

(
Gf (Xi;θf );θy

)
, yi
)

− λ
∑

(Xi,di)∈(DS∪DT )

Ld

(
Gd

(
Gf (Xi;θf );θd

)
, di
)

(3)

where Ly is the loss of the language classifier, Ld is the loss
of the domain classifier, and λ is a parameter that controls the
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Figure 1: A schematic view of our models: (a) Non-adaptive,
and (b) Domain adaptive LID with adversarial classifier Gd.

contribution of the domain classifier’s loss to the overall loss. In
practice, this adversarial loss is realized with a special layer that
reverses the direction of the gradient signal coming from the
domain classifier’s loss into the feature extractor during back-
propagation, which is referred to as a gradient reversal layer.
We refer the reader to the original paper for a detailed overview
of the training procedure [28].

3. Experimental Setup
3.1. Datasets for Slavic LID

GlobalPhone Read Speech (GRS) We use the Slavic portion
of the multilingual GlobalPhone speech database [26] which in-
cludes read speech recordings from native speakers of six Slavic
languages: Bulgarian (BUL), Croatian (HRV), Czech (CZE),
Polish (POL), Russian (RUS), and Ukrainian (UKR). The utter-
ances vary in length and quality across languages. We set the
minimum utterance length to 3 seconds and segment longer ut-
terances into non-overlapping 3-second speech segments. Our
final training subset consists of 8,000 utterances per language.
We use the same splits as in [31].

Radio Broadcast Speech (RBS) A large collection of Slavic
recordings were collected by harvesting online radio broadcasts
in [16, 27]. The original dataset contains recordings for 11
Slavic languages. We use the same subset of six languages as
in the GRS dataset. The extracted utterances are either seg-
ments of professional news reports or of spontaneous speech
during discussions. Occasionally, the utterances include back-
ground music and different sorts of acoustic noise. We sample
8,000 and 500 utterances per language from the training split as
our training and validation sets, respectively. This dataset does
not include any speaker IDs. Thus, we cannot confirm whether
training and evaluation speakers are disjoint.

3.2. Low-level Feature Extraction

In our experiments, we use the first 13 coefficients of MFSCs
and MFCCs, with the zeroth coefficient being the average frame
energy, as low-level speech features. While previous works usu-
ally refer to MFSCs as mel-filterbanks [18], we use the term
MFSCs to refer to mel-frequency spectral features that are cor-

478



related [32]. Since both datasets in our study are sampled at
16 kHz, we extract frames of 400 samples with 160 samples
overlap, which corresponds to 25 ms and 10 ms, respectively.
We normalize the features to have utterance-level zero mean
and unit variance.

3.3. Model Architecture and Hyperparameters

CNN Architecture We use 1D 3-layer convolution over the
temporal dimension with 128, 256, and 512 filters and widths
of 5, 10, and 10 for each layer and keep stride step at 1. We ap-
ply batch normalization and ReLU non-linearity following each
convolutional operation. We apply max pooling to downsample
the representation only at the end of the convolution block. For
the language classifier, we use 2 fully-connected layers (512→
512→ 6) before the softmax for both the non-adapted and the
adapted LID models.

Domain-Adaptive Model For our adapted LID models, we
use a 3-layer feed-forward network (512 → 1024 → 1024 →
2) as the domain classifier. For the adaptation factor λ, we
use a gradually increasing value ∈ [0, 1] to suppress the noise
from the feature extractor during the initial phase of the training
procedure. We experiment with two variants of the domain-
adaptive model: (1) DA-LID I: an identical configuration to
[28], where the convolutional block of the model is considered
as the feature extractor, and (2) DA-LID II: we consider the
feature extractor as the convolutional block as well as the first
layer of the fully-connected block; thus, the reversed gradient
signal from the domain classifier is back-propagated into all lay-
ers of the network except the final layer before the softmax of
the language classifier.

Training Details We use cross-entropy loss for both Ly and
Ld. The ADAM optimizer is used with learning rate of 0.001.
We train our models with a batch size of 256 for 50 epochs and
observe the validation performance during training.

Implementation We use PyTorch to implement the LID mod-
els and make our code publicly available.1

4. Experimental Results
We now present and discuss the results of our experiments. To
make the results comparable across datasets and prevent unde-
sirable effects due to utterance length mismatch, we train and
evaluate each of our LID models on 3-second utterances. Since
the GRS evaluation data is imbalanced, we use balanced accu-
racy [33] as our evaluation metric to obtain a better estimate
of the model performance. We observe that balanced accuracy
scores highly correlate with equal error rate (EER) and average
cost (Cavg), which we do not report for the sake of conciseness.

4.1. Cross-Domain Evaluation

Table 1 presents the results of the cross-domain evaluation on
both datasets without adaptation. Even though our LID models
are not heavily regularized, the in-domain performance is al-
ways above 95%, while MFSC and MFCC features yield a com-
parable performance. On the other hand, out-of-domain (OOD)
evaluation shows a considerable drop in accuracy in each cross-
domain setting. It is interesting to observe that the drop in accu-
racy is more pronounced for MFCC features, and MFSCs seem
to be more robust under domain shift. The impact of domain
shift is more pronounced in the GRS→ RBS direction.

1https://github.com/uds-lsv/da-lang-id

Table 1: Cross-domain evaluation of LID models in acc. (%).

Evaluation

Dataset In-domain OOD ∆

GRS MFSCs 95.27 43.27 -54.55
MFCCs 95.81 37.80 -60.54

RBS MFSCs 95.34 54.01 -43.35
MFCCs 95.00 50.97 -46.35

4.2. Adaptation Results

In our adaptation experiments, we investigate two transfer tasks;
GRS → RBS and RBS → GRS. The results are shown in Ta-
ble 2. The adapted models consistently improve the accuracy
compared to the source-only non-adapted baseline with both
features and in both directions. Our DA-LID II model yields
the best results, which suggests that the domain discrepancy
is present not only in the convolutional layers, but also in the
fully-connected layers that are more distant from the input. We
present and discuss the results for both directions.

RBS→GRS Both adapted models yield significant improve-
ments over non-adapted models. The MFCC-based DA-LID II
boosts OOD accuracy from 50.94% to 90.56% with a relative
accuracy gain of 77.7%.
GRS→ RBS Even though adapted models improve over the
baseline, the improvements in this direction are less impres-
sive than what is observed in the RBS → GRS direction. Our
MFSC-based DA-LID II model performs best and improves
the accuracy by 16.6% compared to the baseline.

4.3. Discussion

The performance gap between the two directions in our experi-
ments seemed surprising at the beginning. In retrospective, this
should not be surprising as the two directions are not equally
challenging. The RBS dataset is more diverse in terms of the
number of unique speakers and background noise. An LID
model trained on the RBS dataset has learned to extract lan-
guage ID features from noisy speech signals, thus it is expected
to be more generic and perform well on clean speech signals
even under domain shift. This finding is consistent with what
has been reported in the domain adaptation literature on how
source domain diversity affects adaptability of the model to new
domains [28]. On the other hand, if the model has not been ex-
posed to noisy speech signals during training, it is unlikely to
perform well on noisy signals even if the representation dis-
crepancy has been minimized, which is the case in the GRS→
RBS direction. This suggests that alternative adversarial train-
ing procedures that add noise to the input representation could

Table 2: OOD performance of adapted models in acc. (%).

Adaptation Method

Direction None DA-LID I DA-LID II

GRS → RBS
MFSCs 43.27 47.22 (+09.1) 50.56 (+16.6)
MFCCs 37.80 41.77 (+12.6) 44.55 (+17.9)

RBS → GRS
MFSCs 54.01 72.12 (+33.5) 86.99 (+61.1)
MFCCs 50.97 66.50 (+30.5) 90.56 (+77.7)
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Figure 2: OOD F1 score (%) per language of our MFCC-based
models in the RBS→ GRS direction.

be explored to encourage the model to transform the noisy in-
put signals into noise-robust representations. Moreover, our ex-
periments show that MFCCs are more sensitive to input vari-
ations due to domain shift, thus MFCC-based models in both
directions tend to benefit more from adaptation in terms of rela-
tive accuracy gain compared to their MFSC-based counterparts,
with only one exception case.

5. Adaptive Model Analysis
In this section, we seek to understand why unsupervised adapta-
tion with adversarial training improves OOD performance. We
analyze the results of the RBS → GRS transfer task to get in-
sights into the factors that lead to the significant improvement.

5.1. Fine-grained Performance Analysis

Fig. 2 shows the performance per language measured by F1

score. In the non-adapted case, we observe a much higher vari-
ance between languages compared to the adapted models. For
example, while the non-adapted model achieves up to 70% F1

on Czech, it drops to 18.6% on Ukrainian, which is slightly
better than the chance-level F1 (16.7%). We inspected the per-
formance on Ukrainian in the other direction and found that the
F1 is even worse than chance-level. We hypothesized that the
acoustic conditions of the Czech recordings in the two domains
are similar, while the discrepancy is maximal in the case of
Ukrainian. To validate this hypothesis, we manually inspected
several Ukrainian utterances from the GRS dataset. We found
that most utterances are characterized by unnatural pauses and
hesitations that distort the speech signal and are uniformly dis-
tributed across Ukrainian training and evaluation speakers in
the GRS dataset. This effect adds to the discrepancy due to
domain shift since RBS utterances are more naturally flowing
speech than the read speech from the GRS dataset, despite the
occasional background noise. In particular, this effect creates
abnormal patterns that hinder non-adapted LID performance in
two ways: (1) if these patterns are not uniformly distributed
across languages and observed during training, the network ex-
ploits them as shortcuts to discriminate between languages, and
(2) if these patterns are encountered during OOD inference,
the distorted signal causes a failure because the model has not
been exposed to such patterns during training. Both cases lead
to poor OOD generalization when training on a single-domain
dataset. However, since these patterns are only present in one
dataset, they are good predictors of the domain. Therefore, ad-
versarial training with domain confusion prevents the models
from exploiting such dataset-specific artifacts, which consis-
tently yields a better OOD generalization. The advantage of ad-

(a) Non-adapted (b) DA-LID I (c) DA-LID II

Figure 3: t-SNE visualization: (Top) data points are marked by
domain, red points correspond to source samples while green
points corresponds to target samples, and (Bottom) data points
are marked by language.

versarial training is demonstrated in Fig. 2. Our adapted model
boosts the F1 score on Ukrainian from 18.6% to 96.0%, which
is surprisingly the highest in this direction.

5.2. Visualizing the Representations

In Fig. 3, we visualize the representations using the t-SNE algo-
rithm [34]. We sample a set of 1800 data points from each do-
main and obtain the representations from the last hidden layer
of the MFCC-based LID models: (a) source-only non-adapted
LID, (b) DA-LID I, and (c) DA-LID II. Fig. 3 shows how
adaptation aligns the distributions of the extracted representa-
tions from the two domains.

6. Conclusions
We have investigated the problem of spoken language iden-
tification for closely-related languages in a cross-domain set-
ting, using deep convolutional neural networks as discrimina-
tive models. While our experiments have confirmed that they
perform very well within-domain, our cross-domain evaluation
has revealed that neural models poorly generalize to a novel
dataset with acoustic conditions that differ from those that have
been observed during training. To improve the robustness of
our models against domain mismatch, we have applied unsu-
pervised domain adaptation with gradient reversal and shown
that our adaptive models generalize better across domains. Our
analysis has shown that adversarial training prevents the model
from exploiting dataset-specific artifacts, thus leading to better
out-of-domain generalization. We have identified the diversity
of the speech samples in the source domain as the major fac-
tor that affects the adaptability of the model to a new domain.
Given a diverse source dataset, our adaptive models achieved
relative accuracy improvements of up to 77.7%.
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