
Releasing a toolkit and comparing the performance of language embeddings
across various spoken language identification datasets

Matias Lindgren1, Tommi Jauhiainen2, Mikko Kurimo1

1Department of Signal Processing and Acoustics, Aalto University, Finland
2Department of Digital Humanities, University of Helsinki, Finland

matias.lindgren@iki.fi, tommi.jauhiainen@helsinki.fi, mikko.kurimo@aalto.fi

Abstract
In this paper, we propose a software toolkit for easier end-to-
end training of deep learning based spoken language identifi-
cation models across several speech datasets. We apply our
toolkit to implement three baseline models, one speaker recog-
nition model, and three x-vector architecture variations, which
are trained on three datasets previously used in spoken language
identification experiments. All models are trained separately on
each dataset (closed task) and on a combination of all datasets
(open task), after which we compare if the open task training
yields better language embeddings. We begin by training all
models end-to-end as discriminative classifiers of spectral fea-
tures, labeled by language. Then, we extract language embed-
ding vectors from the trained end-to-end models, train separate
Gaussian Naive Bayes classifiers on the vectors, and compare
which model provides best language embeddings for the back-
end classifier. Our experiments show that the open task condi-
tion leads to improved language identification performance on
only one of the datasets. In addition, we discovered that increas-
ing x-vector model robustness with random frequency channel
dropout significantly reduces its end-to-end classification per-
formance on the test set, while not affecting back-end classifi-
cation performance of its embeddings. Finally, we note that two
baseline models consistently outperformed all other models.
Index Terms: spoken language identification, deep learning,
x-vector, language embedding, TensorFlow

1. Introduction
Spoken Language Identification (SLI)1 is the task of identifying
the language of a spoken utterance. For a thorough introduction
to SLI, see [1]. Automating the comparison of several differ-
ent SLI models can be challenging if each model uses its own
data pipeline, making it difficult to ensure that a particular com-
parison is not affected by unknown variability of the underlying
implementations. Although several approaches to deep learning
based end-to-end SLI have been proposed, there is no easy, uni-
fied way to train and compare several SLI models. We seek to
remedy this situation by proposing an easy to use toolkit, built
on the popular TensorFlow deep learning framework [2]. We
use the toolkit to implement one baseline x-vector model, three
variations of it, and three additional SLI architectures. These
architectures are then trained on three SLI datasets discussed in
Section 3.
X-vector SLI X-vector based SLI has in the past two years
shown to be a viable alternative to i-vector based SLI [3, 4, 5, 6,
7, 8, 9], although x-vectors were originally proposed for speaker
recognition [10]. Some extensions that have been proposed to
the x-vector architecture include 2-dimensional (2D) convolu-

1SLI is also known as Spoken Language Recognition (SLR).

tional neural network (CNN) feature extractor front-ends, at-
tention mechanisms and long short-term memory (LSTM) lay-
ers [6], as well as a larger time-delayed deep neural network
(TDNN) structure with residual, skip connections [11]. In the
fourth oriental language recognition (AP19-OLR) challenge, an
x-vector based SLI model was given as the baseline [12]. In ad-
dition to supporting end-to-end SLI, the x-vector architecture
can also be used to learn a fixed-length language embedding
representation for variable length utterances [4]. An alterna-
tive way of discovering embedding spaces is to explicitly map
the embedded vectors onto a hypersphere by L2-normalization,
where the angular distance of embedding vectors imply class
similarity. This approach has outperformed i-vector based sys-
tems both in SLI [13] and speaker recognition [14].
Contributions of this paper We publish a new, end-to-end
SLI toolkit for running multiple SLI experiments on multiple
datasets, implement seven existing SLI architectures on our
toolkit, and run experiments on three SLI datasets. We imple-
ment the SphereSpeaker speaker recognition architecture [14]
on our toolkit and apply it to SLI for the first time. We release
our toolkit online as free open source software2. In addition, we
publish3 the configuration files, dataset metadata, and scripts for
all experiments discussed in this paper to improve reproducibil-
ity of our results.

2. End-to-end deep learning SLI toolkit
Several frameworks and toolkits supporting end-to-end, auto-
matic speech recognition (ASR) have been proposed [15, 16,
17, 18]. Applying ASR methods to SLI, e.g. by training
language classifiers on phoneme embeddings extracted from
a phoneme recognizer, has shown to work very well [19, 20,
21, 22]. While end-to-end SLI performed directly on labeled
speech features is usually outperformed by models that utilize
phoneme level information, it is sometimes possible to reach
good performance also with end-to-end models [6, 23]. Our
toolkit focuses only on the latter, simpler task of end-to-end SLI
from spectral or cepstral features. This allows the toolkit to re-
main more lightweight compared to the larger frameworks that
focus on ASR tasks such as sequence annotation based on con-
nectionist temporal classification [24]. However, one trade-off
is that there is no support for training multilingual bottleneck
features. These must be acquired using other methods if one
wishes to use them as input features. Nevertheless, our toolkit
provides an easy starting point for training SLI models on an
several speech datasets, therefore making the comparison of
different methods significantly easier. Similar to librosa [25]
providing an easy Python programming language interface for

2https://github.com/matiaslindgren/lidbox
3https://github.com/matiaslindgren/

interspeech-2020-lidbox

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-2706467



audio analysis, we hope our toolkit can provide an easy way to
get started with SLI experiments.

The core of our toolkit has been implemented with Ten-
sorFlow 2, which supports signal processing and model train-
ing on the GPU. Simple signal processing techniques based on
the open source implementations of librosa [25] and Kaldi [15]
have been implemented into our toolkit to support high per-
formance, parallel feature extraction. Note that all feature ex-
traction is performed with TensorFlow, librosa or Kaldi is not
required. We apply dataset iterators4 from the TensorFlow
data module to construct parallelized data pipelines that support
datasets with unbounded amounts of samples. All data process-
ing steps from reading the acoustic data from disk to training a
SLI model on spectral features is done in batches, allowing the
user to control memory usage regardless of dataset size. Inter-
mediate pipeline state can be cached to disk into a single binary
file. This allows the user to perform all high latency operations,
such as random disk access of several utterances, in a single
pre-processing pass. The toolkit also supports extraction of lan-
guage embedding vectors from trained end-to-end SLI models
and a simple back-end training module for the language vectors.
Lastly, we claim that the toolkit could also be used for end-to-
end classification of speech signals beyond SLI, since the toolkit
does not make any assumptions on what the provided signal la-
bels encode.

3. Datasets
In this paper, we use three different datasets for training and
testing. We did not have access to the NIST LRE datasets.

AP19-OLR Oriental Language Recognition challenge 2019
(AP19-OLR), contains speech in 10 languages mainly spoken
in Asia and one out-of-set (OOS) mixture of European lan-
guages [12]. The dataset includes 261 hours of training data
and 5 hours of test data. For testing, we use the AP19-OLR
short-utterance task (AP19-OLR task 1), where all test utter-
ances have a duration of exactly 1 second. For validation, we
use the AP19-OLR short-utterance validation set, which con-
tains 6 hours of exactly 1 second long utterances. The OOS
mixture does not have any samples in the test or validation set.

MGB-3 3rd Multi-Genre Broadcast challenge (MGB-3), con-
tains speech in 5 regional Arabic dialects [26]. The dataset
includes 53 hours of training data and 10 hours of test data.
We follow the approach of [27], who augmented the training
set with randomly chosen validation set utterances. In this ap-
proach, we choose uniformly at random 90% validation set ut-
terances separately for each of the 5 classes, create 4 new copies
of each utterance, and include this 5-fold augmented validation
set into the training set. This brings the amount of training data
to 99 hours. The remaining 10% is used as a held-out validation
set. The test set contains test utterances of varying length, with
the median duration at 15 seconds.

DoSL Dataset of Slavic Languages (DoSL), contains speech in
11 Slavic languages [19]. The dataset includes 220 hours of
training data and 8 hours of test data, where test utterances are
almost uniformly distributed between 5 and 6 seconds. DoSL
does not provide a validation set so we created our own held-out
set from the training set. We choose uniformly at random 500
utterances for each of the 11 languages from the training set and
remove these utterances from the training set. This results in
5500 validation set utterances (8 hours), with a median duration
of 4.8 seconds.

4https://www.tensorflow.org/versions/r2.2/
api_docs/python/tf/data/Dataset

Closed and open tasks All seven models described in Sec-
tion 4 are first trained in a “closed task” manner, separately
on every training set of every dataset, using the validation set
of each dataset to monitor training progress. When the best
weights for each model has been discovered, measured against
the validation set, we evaluate the models as end-to-end lan-
guage predictors on each of the test sets. Then, we use the same,
trained models as feature extractors to generate fixed-length lan-
guage vectors from the training and test sets of every dataset.
The language vector training sets are then used for training a
back-end classifier, which is evaluated as a language predictor
on language vectors extracted from each test set, using each
end-to-end model.

In addition, we train all models in an “open task” manner,
where each model is first trained on the union of all three train-
ing sets, using the union of all three validation sets to monitor
training progress. After discovering the best weights, we ex-
tract language vectors in a closed task manner, separately for
each dataset and train the back-end classifiers. By doing this,
we compare if end-to-end SLI models as language vector ex-
tractors benefit from training on a larger amount of data, while
still extracting language vectors from a smaller amount of data.

Note that the union of all three training sets does not include
the OOS mixture from AP19-OLR (label “unknown”) since we
could not confirm whether this mixture contains languages from
MGB-3 or DoSL. In this case, including it would present multi-
ple labels for the same language, which could have a detrimental
effect for model performance in the open task.

4. End-to-end experiments
Models We use our toolkit to implement three different base-
line models for the three datasets described in Section 3, one
speaker recognition model, and three different x-vector vari-
ations. All models are based on existing architectures. The
choice of baselines for MGB-3 and DoSL were motivated by the
success previously reported for these two datasets. The base-
line architecture for AP19-OLR was defined as the competition
baseline by [12] and we choose the same baseline. We enumer-
ate the model architectures used in this paper as follows:

1. Regular x-vector [4], but TDNN layers replaced with tem-
poral convolution layers as in [27]. See Table 2 for our con-
figuration. This is our baseline model for AP19-OLR. In
addition, this is the baseline x-vector architecture for creat-
ing the variations, i.e. models 5, 6, and 7.

2. 1D CNNs with average pooling over the time dimension
and three FC layers [27]. This is our baseline model for
MGB-3.

3. Two bi-directional gated recurrent units (BGRU) and three
FC layers [19]. This is our baseline model for DoSL.

4. SphereSpeaker architecture, that has recently been success-
ful for speaker recognition [14], now applied to SLI.

5. Model 1 with increased robustness by applying channel
dropout on input during training, using probability 0.5 [28].
See Figure 1 for an example on channel dropout applied on
FBANK input.

6. Model 1 extended with additional layers before the statis-
tics pooling layer as in [11, Table 3]. Initially, we used FC
layers to extend the model but noticed that this caused un-
stable training progress, leading to non-finite weight values.
Therefore, we use only temporal convolution layers before
the statistics pooling layer, as in Model 1.

468



Model 106 params D mean min/epoch

1 4.5 512 5.1
2 9.0 1500 6.2
3 8.6 1024 30.9
4 5.1 1000 33.0
5 4.5 512 5.0
6 6.4 512 6.7
7 4.6 512 13.4

Table 1: Amount of parameters in millions and the language
embedding dimension D, representing the number of features,
for each model. We also measured the average amount of min-
utes per epoch required to train each model architecture using
a Tesla V100-PCIE-32GB on the open task of all three datasets.

Layer Output shape

0 Input X 198× 40
1 Conv1D 512× 5× 1 198× 512
2 Conv1D 512× 3× 2 99× 512
3 Conv1D 512× 3× 3 33× 512
4 Conv1D 512× 1× 1 33× 512
5 Conv1D 1500× 1× 1 33× 1500
6 Reduce mean and stddev. 3000
7 FC ReLU 512 512
8 FC ReLU 512 512
9 FC log-softmax N N

Table 2: Implementation of model 1. Notation for convolution
layers is “filters×kernel width×stride”. All layers except 0, 6,
and 9 are ReLU activated and batch normalized. Layers 1–5 are
batch normalized over the time axis to avoid diluting informa-
tion over different frequency channels. X-vectors are extracted
as outputs of layer 7 before ReLU activation and batch normal-
ization.

7. Model 1 with a small 2D CNN front-end for gathering fre-
quency information [6], see Table 3 for our 2D CNN con-
figuration.

Model input and output All acoustic data consists of single-
channel waveform signals of varying lengths at 16 kHz sample
rate. Audio files with invalid headers are dropped and channels
of multi-channel signals are merged by averaging. We assume
the ratio of invalid files is negligible compared to all files. The
list of training set audio files is shuffled before reading, sep-
arately for all three training sets. We note that energy-based
voice activity detection (VAD) is used in 4 out of 7 cases in
the reference experiments [4, 27, 6, 11], partially used in 2 out
of 7 cases [19, 14], and not used in [28]. Therefore, we de-

Layer Output shape

0 Input X 198× 40
1 Add channel dimension 198× 40× 1
2 Conv2D 256× (1, 5)× (1, 1) 198× 36× 256
3 Conv2D 128× (1, 3)× (1, 2) 198× 17× 128
4 Conv2D 64× (1, 3)× (1, 3) 198× 5× 64
5 Conv2D 32× (1, 3)× (1, 3) 198× 1× 32
6 Flatten channels 198× 32

Table 3: 2D CNN front-end of an x-vector model [6], which is
prepended to model 1 to produce model 7. Notation for convo-
lution layers is “filters×kernel size×strides”. I.e. we use unit
width and stride over time steps but larger height and stride
over frequency channels. Outputs of layers 2–5 are ReLU acti-
vated and batch normalized.

Figure 1: Log-scale Mel-spectrogram of a randomly chosen 3
second training utterance from AP19-OLR with (top) and with-
out (bottom) channel dropout with probability 0.5.

cided to use a simple energy-based VAD in all our experiments.
Our VAD approach is based on comparing the root-mean-square
(RMS) values of non-overlapping 10 ms windows to the mean
RMS over all 10 ms windows within each signal. We require
non-speech segments to contain at least 100 ms of continuous
non-speech decisions before they are dropped.

After VAD, every signal that is shorter than 2 seconds is
repeatedly appended to itself until its duration is at least 2 sec-
onds. Then, all signals are divided into utterances of exactly 2
seconds, with 0.5 second overlap. A similar repeating method
was used by [29], who suggested that repeating the feature se-
quence extracted from a short utterance is an effective way of
providing more information about the utterance to the language
classifier. However, we choose to repeat the short utterances al-
ready in the time domain, because using fixed length samples
allows our toolkit to store all acoustic data more effectively into
a single file, containing batches of 2 second utterances. In ad-
dition, using a fixed utterance length provides more comparable
SLI results between different model architectures. We store all
2 second utterances into 9 files, each containing the training,
validation, and test sets for all three datasets. From these 2 sec-
ond utterances, log-scale Mel-spectra X ∈ R198×40 (FBANK)
is extracted with a 512-point FFT from 25 ms windows using
10 ms offset, warped into 40 Mel-frequency bins. Finally, each
channel is centered to zero mean within each X. The same pro-
cedure is applied also to the validation and test data.

Each model outputs non-positive log-softmax language
scores y ∈ RN where N is the amount of languages in the
target set. Final language scores for a variable length test ut-
terance are produced by averaging over the outputs on all its 2
second chunks. In case a model fails to produce predictions for
a test utterance, smallest possible (worst case) log-softmax lan-
guage scores are generated for all language classes for that test
utterance.

Training and testing All seven models are trained using Ten-
sorFlow version 2.1 with the Adam optimizer [30] using learn-
ing rate 0.0001. All other optimizer parameters are left to their
default values. Training samples X are shuffled within a buffer
containing 2 · 104 samples, from which training batches con-
taining 64 samples are produced. One exception is model 3, for
which we apply an additional preparation step before shuffling,
where each FBANK X is divided into non-overlapping chunks
X′ ∈ R30×40. We chose a time context of 30 time steps based
on the results by [19]. In addition, the shuffle buffer size for
training model 3 is b198/30c · 2 · 104 = 1.2 · 105, to make
sure the amount of information is approximately same as in the
shuffle buffers of all other models. Otherwise model 3 is trained
exactly as all other models. For all models, early stopping is ap-
plied with the condition that multi-class cross-entropy loss [31,
Eq. 4.108] has not improved within 20 epochs from its low-
est value, measured on the validation set. After early stopping,
model weights are reset to the best weights, chosen from the

469



Model AP19-OLR MGB-3 DoSL Avg

1 0.125 0.260 0.019 0.135
2 0.126 0.236 0.024 0.129
3 0.128 0.263 0.037 0.143
4 0.146 0.238 0.024 0.136
5 0.222 0.334 0.166 0.241
6 0.125 0.285 0.026 0.145
7 0.139 0.325 0.030 0.165

Avg 0.144 0.277 0.047

Table 4: Cavg closed task, end-to-end.

epoch when validation loss was its lowest value.
After training, language scores y are predicted for each test

set utterance X. For model 3, language scores are first predicted
for all X′, which are then averaged to produce language scores
for the original 2 second utterance chunk X, from which all X′

were partitioned from. For simplicity, we place equal weight on
each chunk. Then, we use our toolkit to compute the average
detection cost (Cavg) as defined in NIST LRE2017 [32, Eq. 6],
with parameters CMiss = CFA = 1 and PTarget = 0.5, on the
predicted language scores.

Results From Table 4, we compare the Cavg results of mod-
els 1, 2, and 3 to the respective baseline results of AP19-OLR
(0.126) [12], MGB-3 (0.218) [27], and DoSL (0.013) [19], and
note that our results are within 0.1, 1.8, and 2.4 percentage
points. We note that model 1 outperforms other models on
AP19-OLR and DoSL, while model 2 is best on its reference
dataset MGB-3 and the best overall model on average. Also,
model 5 clearly produces worse results compared to all other
models.

5. Back-end classifiers
We choose Gaussian Naive Bayes5 (GNB) for back-end classi-
fication because we found it to be stable and fast to train. While
it is currently the only back-end classifier supported by our
toolkit, we believe new classifiers are relatively easy to add, es-
pecially if they conform to the scikit-learn classifier interface6.
The GNB models are trained on fixed-length language vectors
x ∈ RD (see Table 1), which are extracted from end-to-end
models trained on the closed and open tasks.

Language vector extraction For all models (except 4), x is
extracted from a fully-connected (FC) layer, without activations
and batch normalization. For models 1, 5, 6, and 7, x is an x-
vector, i.e. the outputs of the first FC layer after the statistics
pooling layer [4]. For model 2, we choose x as the output of
the first FC layer after the average pooling layer. For model 3,
we choose x as the output of the first FC layer after the second
BGRU layer. For model 4, x is the L2-normalized output of the
SphereSpeaker embedding layer [14].

Classification For all three training and test sets, we feed X to
the seven different, trained end-to-end models and collect new
training and test sets of language vectors x. All D features of
each x are scaled to zero mean and unit variance using statis-
tics computed separately on each training set. Dimensionality
is reduced to N − 1 by probabilistic linear discriminant anal-
ysis7 [33] and L2-normalization is applied on the reduced vec-

5https://scikit-learn.org/0.23/modules/
generated/sklearn.naive_bayes.GaussianNB.html

6https://scikit-learn.org/stable/supervised_
learning.html

7https://github.com/RaviSoji/plda

Model AP19-OLR MGB-3 DoSL Avg

1 0.135 0.218 0.030 0.128
2 0.153 0.211 0.028 0.130
3 0.147 0.248 0.056 0.151
4 0.167 0.213 0.032 0.137
5 0.136 0.248 0.041 0.142
6 0.143 0.243 0.029 0.138
7 0.149 0.255 0.040 0.148

Avg 0.147 0.234 0.036

Table 5: Cavg closed task, GNB on embeddings.

Model AP19-OLR MGB-3 DoSL Avg

1 0.162 0.193 0.030 0.128
2 0.173 0.181 0.028 0.128
3 0.169 0.226 0.064 0.153
4 0.202 0.193 0.035 0.143
5 0.150 0.200 0.041 0.130
6 0.173 0.209 0.038 0.140
7 0.167 0.202 0.041 0.137

Avg 0.171 0.201 0.040

Table 6: Cavg open task, GNB on embeddings.

tors. Then, GNB is fitted on the reduced x′ ∈ RN−1 training
set vectors. After training, we predict log-likelihoods on the
language vectors extracted from the test set. Finally, we com-
pute Cavg values from these log-likelihoods using the same ap-
proach as with the log-softmax scores and report the minimum
Cavg value as the final result. We have included this back-end
training pipeline into our toolkit.

Results From Table 5 we see that on MGB-3, all models ex-
cept 5 are better as language vector extractors than end-to-
end classifiers, but not on AP19-OLR or DoSL. We also see
that frequency channel dropout (model 5) significantly weak-
ens end-to-end SLI performance (Table 4), without affecting
language embedding quality (Table 5). This is in contrast
with the common assumption that speaker embedding quality
is proportional to the end-to-end classification performance of
the speaker recognition model used for extracting the embed-
dings [34]. Regarding the open task training condition, we note
by comparing Tables 6 and 5 that increasing the dataset size
improves the quality of language embeddings on MGB-3 even
further, but at the same time reduces the results on both AP19-
OLR and DoSL.

6. Conclusions
We proposed a new toolkit for easier end-to-end SLI and ap-
plied the toolkit for comparing SLI performance of different
deep learning models both end-to-end and using back-end clas-
sifiers on language embedding vectors. We noticed that lan-
guage embeddings on the Arabic dialect dataset MGB-3 are eas-
ier to classify with GNB when we allow an open task approach
where language embedding model is trained on all available,
three training sets. However, this was not beneficial for the two
other datasets. In addition, we noticed that poor end-to-end SLI
performance of frequency channel dropout [28] did not imply
poor back-end classification performance.

7. Acknowledgements
This work was supported by EU’s Horizon 2020 research and
innovation programme via the project MeMAD (GA 780069).
Computational resources were provided by Aalto Science-IT.

470



8. References
[1] H. Li, B. Ma, and K. A. Lee, “Spoken Language Recognition:

From Fundamentals to Practice,” Proceedings of the IEEE, vol.
101, no. 5, pp. 1136–1159, 5 2013.

[2] Martı́n Abadi et al. (2015) TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from https:
//tensorflow.org.

[3] A. Mccree, D. Snyder, G. Sell, and D. Garcia-Romero, “Language
recognition for telephone and video speech: The jhu hltcoe sub-
mission for nist lre17.” in Odyssey, 2018, pp. 68–73.

[4] D. Snyder, D. Garcia-Romero, A. McCree, G. Sell, D. Povey, and
S. Khudanpur, “Spoken Language Recognition using X-vectors,”
in Proc. Odyssey 2018 The Speaker and Language Recognition
Workshop, 6 2018, pp. 105–111.

[5] A. Hanani and R. Naser, “Spoken arabic dialect recognition using
x-vectors,” Natural Language Engineering, pp. 1–10, 5 2020.

[6] X. Miao, I. McLoughlin, and Y. Yan, “A New Time-Frequency
Attention Mechanism for TDNN and CNN-LSTM-TDNN, with
Application to Language Identification,” in Proc. Interspeech
2019, 9 2019, pp. 4080–4084.

[7] H. Wu, W. Cai, M. Li, J. Gao, S. Zhang, Z. Lyu, and S. Huang,
“Dku-tencent submission to oriental language recognition ap18-
olr challenge,” in 2019 Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference (APSIPA
ASC). IEEE, 2019, pp. 1646–1651.

[8] W. Cai, J. Chen, J. Zhang, and M. Li, “On-the-fly data loader
and utterance-level aggregation for speaker and language recogni-
tion,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 28, pp. 1038–1051, 2020.

[9] P. Jain, K. Gurugubelli, and A. K. Vuppala, “Study on the effect
of emotional speech on language identification,” in 2020 National
Conference on Communications (NCC). IEEE, 2020, pp. 1–6.

[10] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-Vectors: Robust DNN Embeddings for Speaker Recog-
nition,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 4 2018, pp. 5329–5333.

[11] J. Villalba, N. Chen, D. Snyder, D. Garcia-Romero, A. McCree,
G. Sell, J. Borgstrom, F. Richardson, S. Shon, F. Grondin et al.,
“The JHU-MIT system description for NIST SRE18,” Johns Hop-
kins University, Baltimore, MD, Tech. Rep, 2018.

[12] Z. Tang, D. Wang, and L. Song, “AP19-OLR Challenge: Three
Tasks and Their Baselines,” in 2019 Asia-Pacific Signal and In-
formation Processing Association Annual Summit and Conference
(APSIPA ASC), 11 2019, pp. 1917–1921.

[13] G. Gelly and J. Gauvain, “Spoken Language Identification Using
LSTM-Based Angular Proximity,” in Proc. Interspeech 2017, 8
2017, pp. 2566–2570.

[14] T. Kaseva, A. Rouhe, and M. Kurimo, “Spherediar: An effective
speaker diarization system for meeting data,” in 2019 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU),
12 2019, pp. 373–380.

[15] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding, 2011, iEEE Catalog No.: CFP11SRW-
USB.

[16] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end
speech recognition using deep RNN models and WFST-based de-
coding,” in 2015 IEEE Workshop on Automatic Speech Recogni-
tion and Understanding (ASRU), 12 2015, pp. 167–174.

[17] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. Enrique Yalta Soplin, J. Heymann, M. Wiesner, N. Chen,
A. Renduchintala, and T. Ochiai, “ESPnet: End-to-end speech
processing toolkit,” in Proc. Interspeech 2018, 9 2018, pp. 2207–
2211.

[18] M. Ravanelli, T. Parcollet, and Y. Bengio, “The pytorch-kaldi
speech recognition toolkit,” in ICASSP 2019 - 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 6465–6469.

[19] L. Mateju, P. Cerva, J. Zdansky, and R. Safarik, “Using Deep Neu-
ral Networks for Identification of Slavic Languages from Acoustic
Signal,” in Proc. Interspeech 2018, 9 2018, pp. 1803–1807.

[20] Z. Tang, D. Wang, Y. Chen, L. Li, and A. Abel, “Phonetic Tempo-
ral Neural Model for Language Identification,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 26,
no. 1, pp. 134–144, 1 2018.

[21] Z. Ren, G. Yang, and S. Xu, “Two-Stage Training for Chinese Di-
alect Recognition,” in Proc. Interspeech 2019, 9 2019, pp. 4050–
4054.

[22] M. Zhao, R. Li, S. Yan, Z. Li, H. Lu, S. Xia, Q. Hong, and L. Li,
“Phone-aware multi-task learning and length expanding for short-
duration language recognition,” in 2019 Asia-Pacific Signal and
Information Processing Association Annual Summit and Confer-
ence (APSIPA ASC). IEEE, 2019, pp. 433–437.

[23] L. Wan, P. Sridhar, Y. Yu, Q. Wang, and I. L. Moreno, “Tuple-
max Loss for Language Identification,” in ICASSP 2019 - 2019
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 5 2019, pp. 5976–5980.

[24] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of the
23rd International Conference on Machine Learning, ser. ICML
’06. ACM, 2006, pp. 369–376.

[25] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Batten-
berg, and O. Nieto, “librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th python in science conference,
vol. 8, 2015.

[26] A. Ali, N. Dehak, P. Cardinal, S. Khurana, S. H. Yella, J. Glass,
P. Bell, and S. Renals, “Automatic Dialect Detection in Arabic
Broadcast Speech,” in Proc. Interspeech 2016, 2016, pp. 2934–
2938.

[27] S. Shon, A. Ali, and J. Glass, “Convolutional Neural Network
and Language Embeddings for End-to-End Dialect Recognition,”
in Proc. Odyssey 2018 The Speaker and Language Recognition
Workshop, 6 2018, pp. 98–104.

[28] G. Kovács, L. Tóth, D. V. Compernolle, and S. Ganapathy, “In-
creasing the robustness of CNN acoustic models using autoregres-
sive moving average spectrogram features and channel dropout,”
Pattern Recognition Letters, vol. 100, pp. 44 – 50, 2017.

[29] Z. Ma, H. Yu, W. Chen, and J. Guo, “Short Utterance Based
Speech Language Identification in Intelligent Vehicles With Time-
Scale Modifications and Deep Bottleneck Features,” IEEE Trans-
actions on Vehicular Technology, vol. 68, no. 1, pp. 121–128, 1
2019.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, 5 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[31] C. M. Bishop, Pattern Recognition and Machine Learning. New
York, NY, USA: Springer, 2006.

[32] S. O. Sadjadi, T. Kheyrkhah, A. Tong, C. Greenberg, D. Reynolds,
E. Singer, L. Mason, and J. Hernandez-Cordero, “The 2017 nist
language recognition evaluation,” in Proc. Odyssey 2018 The
Speaker and Language Recognition Workshop, 2018, pp. 82–89.

[33] S. Ioffe, “Probabilistic linear discriminant analysis,” in Computer
Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 531–
542.

[34] S. Wang, Y. Qian, and K. Yu, “What Does the Speaker Embedding
Encode?” in Proc. Interspeech 2017, 2017, pp. 1497–1501.

471


