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Abstract

In this paper, we study the technology of multiple acoustic fea-
ture integration for the applications of Automatic Speaker Veri-
fication (ASV) and Language Identification (LID). In contrast to
score level fusion, a common method for integrating subsystems
built upon various acoustic features, we explore a new integra-
tion strategy, which integrates multiple acoustic features based
on the x-vector framework. The frame level, statistics pooling
level, segment level, and embedding level integrations are in-
vestigated in this study. Our results indicate that frame level
integration of multiple acoustic features achieves the best per-
formance in both speaker and language recognition tasks, and
the multi-feature integration strategy can be generalized in both
classification tasks. Furthermore, we introduce a time-restricted
attention mechanism into the frame level integration structure
to further improve the performance of multi-feature integration.
The experiments are conducted on VoxCeleb 1 for ASV and
AP-OLR-17 for LID, and we achieve 28% and 19% relative
improvement in terms of Equal Error Rate (EER) in ASV and
LID tasks, respectively.

Index Terms: feature integration, acoustic features, attentive
learning, speaker verification, language identification, x-vector

1. Introduction

In the last two decades, significant progress has been made in
the fields of Automatic Speaker Verification (ASV) and Lan-
guage Identification (LID). ASV tasks and LID tasks may both
be categorized as classification tasks, even though the implied
information in each task is different. Thus, they share some ba-
sic speech classification technologies. In the early years, the
mainstream technologies of ASV and LID were based on Gaus-
sian mixed models, such as GMM-UBM [1], joint factor analy-
sis (JFA) [2], and the dominant i-vector [3]. With the develop-
ment of the deep neural network, DNN i-vecor [4], d-vector [5]
and x-vector [6] had been proposed in the literature.

Although a series of speaker or language modeling meth-
ods have been proposed, most of them utilize only one kind of
acoustic feature as the encoder’s input. However, due to the
differences in extraction algorithms, different kinds of acous-
tic features may capture unique discriminative information. For
example, MFCC features [7] and FBank features share the same
Mel filter banks, but MFCC eliminates data redundancy via the
Discrete Cosine Transform (DCT); MFCC feature and PLP fea-
ture [8] adopt different filter banks.

Nowadays, it is common to fuse several subsystems, which
are built on various acoustic features, at the score level to
improve the performance [9, 10]. In practical usage, equal
weight fusion is a common approach, while some score-level
fusion toolkits are available and popular in offline competitions

Copyright © 2020 ISCA

457

gyhong@xmu.edu.cn

[11, 12, 13]. Besides score-level fusion, research was conduct-
ed on the combination or extension of acoustic features. Murty
[14] proposed the residual phase feature as an additional feature
for the MFCC feature. The bottleneck feature extraction model
was introduced in [15]. The tandem feature [16] was proposed
by splicing the bottleneck feature with a basic acoustic feature.
In [17], two acoustic features were concatenated directly to cre-
ate a new feature vector with Linear Discriminant Analysis (L-
DA) reducing the new feature’s dimensions. In [18], an end-to-
end framework was presented with an auxiliary feature learning
branch.

In our previous work, we found that multiple acoustic fea-
tures integration learning (MFI) that is integrated within the
neural network at the frame level improved the system perfor-
mance in ASV [19]. In this paper, we further investigate and
compare more multiple acoustic feature integration architec-
tures, including those (1) with two applications: ASV and LID;
and those (2) with more integration levels, such as the statis-
tics pooling level, the segment level, and the embedding level.
In addition, we also expand the proposed multi-feature integra-
tion structure by introducing a time restricted-attention mech-
anism, namely the Attentive Multi-feature Integration (AMFI),
which outperforms our former multi-feature integration archi-
tecture (MFI). The introduction of attentive learning encourages
the two kinds of acoustic features to be more speaker/language
discriminative and to learn more sequential information.

The rest of this paper is organized as follows. In Section
2 we describe different feature integration architectures (MFIs)
and introduce the proposed multi-feature integrations with the
attention mechanism (AMFIs). The experimental settings are
presented in Section 3, and the experimental results are shown
in Section 4. Finally, Section 5 concludes this paper.

2. Multi-feature Integration
2.1. Multi-feature Integration
2.1.1. Frame Level Multi-feature Integration

To utilize the complementarity of acoustic features, we ana-
lyzed and proposed the frame-level multiple acoustic feature
integration structure [19], as shown in Figure 1 (a). With this
structure, two acoustic features are used to train a recognition
model simultaneously, and two features are combined as one
before the statistics pooling operation. Let (X1, X2) C R de-
note two kinds of acoustic feature vectors, such as vectors from
MFCC and PLP, from the same speech frame, and Y; represents
the integrated feature:

Y1 = f3 (cat (f1 (X1;01), f2 (X2;02));0s3)
cat ()

ey

where indicates the concatenating operation,
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Figure 1: Multiple features integration at different levels.

f1(X1;01) is the pre-projection of Acoustic Feature 1 given
the network parameters ©1, and the same for fa (X2;©2), and
f3 (+; ©3) refers to the mapping in the fully connected stitching
layer.

2.1.2. Multi-feature Integration in Different levels

As illustrated in 2.1.1, multiple features can be integrated at
the frame level and be jointly trained within an x-vector model,
which yields significant improvements in ASV tasks [19]. In
this study, we further investigate the possibility of assembling
feature branches at higher levels: the statistics pooling layer and
the segment level, as shown in Figure 1 (b) and (c) separately.
These two kinds of architectures integrate multiple features at
or after the statistics pooling layer, so that each feature learns it-
s own speaker/language discriminative information at the frame
level, while being integrated at a higher level. If we let Y and
Y3 represent the statistics pooling level and segment level inte-
grated features, the computations are written as:

Ys = P (cat (f1 (X1¢;01), f2 (X2t;02))) 2)

Ys=f3 (cat (PlT (f1 (X1:01)) 5 P (f2 (X2t;@2))) ;93>

3)
where X1 C R represents the input Acoustic Feature 1 of the
tt* frame of an utterance. The same applies Xo¢; f1(X1;01)
is the pre-projection of Acoustic Feature 1 given the network
parameters O, and the same also goes for f2 (X2;02). P{ (1)
refers to the statistical pooling opreation that computes the
mean and standard deviation accumulated from the 1** to T""
frame, if we let the number of frames in a chunk of speech e-
qualto T f3(-;©3) is the total computation in fully connected
layers with Os.

2.1.3. Embedding Level Integration

Feature representations can also be integrated at the embedding
level, or x-vector level, after they are extracted from subsys-
tems. For embedding level integration, we choose the most
practical and easily implemented equal weight addition for em-
beddings, named embedding_add in Section 4. The embedding
concatenation is selected as the second method to integrate em-
beddings, which is named embedding_cat.
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Figure 2: The time-restricted attention mechanism.

2.2. Multiple Feature Integration with Attention Mecha-
nisms

After the computation of TDNN layers, feature representations
(high-level features) are considered as information that is en-
hanced for classification. However, redundancies may still exist
in the outputs between the last TDNN layers for two features.
The useful information for classification may not be complete-
ly emphasized, and the sequential information is not well cap-
tured, which is critical for classification. So, we assume that
introducing attention layers before the stitching layer or execut-
ing the attention with the stitching layer would be instrumental
for multi-feature learning.

We design a multi-feature integration structure with a time-
restricted attention mechanism, which was previously proposed
for ASR, to assess multi-feature integration training [20, 21].
The time-restricted attention layer consists of an affine compo-
nent, an attention nonlinearity component, and a ReLU nonlin-
earity component followed by batch normalization, while all the
trainable parameters are in the affine component. As shown in
Figure 2, in the one-head case for simplicity, the time-restricted
attention utilizes related contexts, from left contexts L to right
contexts R, to compute attention weights for the local frame
t. The final output y; is the accumulation of related contexts.
Furthermore, the position encodings 7, ¢t are appended in every
frame with the value v;, which is written as extend (v¢, 7, t), sO
that the 7, ¢ are the one-hot encodings. To achieve better perfor-
mance, we use the multi-head time-restricted attention mecha-
nism, rather than only the one-head attention. The computation
of multi-head attention is as follows:
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Figure 3: Architectures for the multi-feature integration structure with attention mechanisms.

Ye = cat (Yey, Yoy - Ytn) , 0 C N 4
where the cat () means the concatenating operation.
The computation of the i*" head in the multi-head time-

restricted attention mechanism is written as:

t+R
Yi, = Z ct (1) - extend (v, , Tiy ti)

T=t—L

(&)

where extend () is the concatenating operation.

The input x; attention component is interpreted being three
parts appended together: g, k¢, and v; which are the query, key,
and value respectively:

exp (q: - extend (k¢, T,t))
Zy

Ct(T):

where Z; ensures ) ,_c; (1) = 1.

We first investigate and compare the multiple level integra-
tion and the experimental results, which are reported in Section
4. These results show that the frame level integration of mul-
tiple features is the optimum strategy. Thus, for simplicity, we
only introduce the attention mechanism into the frame-level in-
tegration structure.

In the case of frame level integration, the attention layer re-
places the TDNN layer before the stitching layer (named type
1 attention, AMFI 1). Alternatively, we execute the attentive
learning within the stitching layer (named type 2 attention, AM-
FI 2), as illustrated in Figure 3 (a) and (b). In type 1 attention,
two high-level features have their own attention, and the above
formulation (1) is rewritten as:

(6)

Yauer = f3 (cat (attf (f1 (X1:01)), att? (f2 (Xa; @2))) ;@3)

(N
where att? represents the multi-head attention learning with
contexts from L to R.

In type 2 attention, the integration integrates contexts and
information from two features:

Yotz = f3 (attf (cat (f1 (X1;01), f2 (X2;02))); @3)

®)

With the attention mechanism, multi-feature learning em-
phasizes the classification-related features and frames in an ut-
terance. This is done by the computation of weights with con-
texts and position encodings in the attention layer and allevi-
ating redundancies between two feature representations by en-
hancing the more important features. Moreover, it introduces
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additional context information to the higher layer’s classifica-
tion with the position encodings.

3. EXPERIMENTAL SETTINGS
3.1. Data

For the ASV task, the VoxCeleb 1 [22] training set and test set
were utilized. Before ASV training, Kaldi’s [23] augmentation
recipe was used to expand the training set. 140,000 noisy ut-
terances were randomly chosen and mixed up with the origi-
nal 148,642 utterances to compose a new expanded training set.
The augmented VoxCeleb 1 training set contains about 290,000
utterances with 1,211 speakers. The standard VoxCeleb 1 test
set, including 4,715 utterances from 40 speakers, was used as
the test set for ASV task.

For the LID task, we chose the AP-OLR17 training set [9]
to build the language identification model and the AP-OLR17
task 1 (short-utterance test condition, 1 second per utterance)
test set to evaluate the countermeasures. No extra data were
used to augment the training data for the LID task, but we used
speech perturbing to extend the LID training set 3-fold (0.9, o-
riginal, and 1.1). The augmented AP-OLR17 training set has
about 280,000 utterances with ten original languages, including
Mandarin, Cantonese, Indonesian, Japanese, Russian, Korean,
Vietnamese, Kazakh, Tibetan and Uyghur. The LID test set in-
cluded 22,051 utterances from ten target languages.

3.2. System Settings

In our experiments, two combinations of the typical, popular a-
coustic features, MFCC-FBank and MFCC-PLP, were chosen
to investigate the performance of the proposed multi-feature in-
tegrations in ASV and LID tasks.

All models were trained on 16kHz audio data. The acoustic
features included 30 dimensional MFCC features, 30 dimen-
sional PLP features and 40 dimensional FBank features in all
systems. In LID systems, additional three-dimensional pitch
features were appended to acoustic features. All features had
frame-lengths of 25ms, frame-shifts of 10ms, and mean nor-
malizations over a sliding window of up to three seconds. Voice
active detection (VAD) was used to filter out non-speech frames,
and note that different acoustic features share the same VAD for
the frame alignment.

The network architecture of the x-vector baseline system
was the same as in [6], and all models were optimized based on
the x-vector architecture. Consequently, we extracted embed-
dings from the penultimate layer after training. For the time-



Table 1: Experimental results with the metric value EER(%).

System ASV Task LID Task
Baseline (PLP) 4.67 10.04
Baseline (FBank) 5.35 10.34
Baseline (MFCC) 4.76 10.76
No Feature MFCC | MFCC | MFCC | MFCC
’ Combination PLP FBank PLP FBank
1 MFI @ 1st 3.95 3.83 9.64 9.20
2 MFI @ 2nd 4.08 3.62 8.88 9.48
3 MFI @ 3rd 3.76 3.59 8.68 9.04
4 MFI @ 4th 3.86 3.70 8.57 9.04
5 MFI @ 5th 3.73 3.48 8.47 8.97
6 MFI @ stats 3.73 3.69 8.83 9.35
7 MFI @ 6th 3.81 3.60 8.84 9.12
8 Embedding_add 4.37 4.68 9.05 9.38
9 Embedding_cat 4.23 4.56 9.13 9.42
10 Score Level 4.23 4.19 9.06 8.95
11 AMFI 1 3.63 3.48 8.51 8.95
12 AMFI 2 3.53 3.38 8.12 8.48

restricted attention layer, we used 20-headed attention with the
extension operation. The contexts L and R were set to three,
and the dimensions of the key k; and value v, were 40 and 60,
respectively. All models were trained on Kaldi with the SGD
optimizer.

For ASV tasks, the back-end process was the same as Kal-
di’s Voxceleb 1 recipe, which included the LDA, centering and
PLDA. In the LID task, we chose logistic regression (LR) as the
classifier after carrying out the back-end process, which includ-
ed the LDA, whitening, and centering. Back-ends were imple-
mented on the Kaldi platform.

4. RESULTS AND ANALYSIS

Experimental results are listed in Table 1 in terms of EER(%).

4.1. Speaker Recognition Task

From the comparison of embedding-level fusion and score-level
fusion in baselines, the combination of MFCC and FBank yield-
ed greater improvements in the ASV task than the combina-
tion of MFCC and PLP. Feature integration within the neural
network achieved significant improvements compared with the
baseline systems in both kinds of feature combinations. The
best performing systems were frame level integrations, while
the segment level integration and the integration in the statistics
pooling layer offered much less improvement. When the model
with the stitching layer at the frame level integration was cho-
sen appropriately, those systems outperformed systems at oth-
er integration levels. For the integration pattern of MFCC and
FBank, when branches were stitched at the fifth layer, the best
EER was 3.48%, which was 26% relative improvement over the
best baseline. On the other hand, the embedding level fusion
could not reliably promise much improvement. In two kinds of
implementations of attentive integrations, AMFI 1 and AMFI
2, the attention layer contributed to the multi-feature integra-
tion ASV system, while AMFI 2 achieved greater improvement.
The best EER among the system with the attention mechanism
was 3.38%, which was 28% relative improvement over the best
baseline system.

4.2. Language Identification Task

The LID systems with the integration pattern of MFCC and F-
Bank outperformed systems with the integration pattern of M-
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Figure 4: Trends of mutli-feature integration systems’ experi-
mental results.

FCC and PLP; these were shown at the baseline embedding
level and score level integration. Similar to the results in the
speaker recognition task, the best performing system was also
achieved at the frame level. The best stitching layer was also the
fifth layer with 8.47% EER, which obtained 16% relative im-
provement over the best baseline. This performance surpassed
the score level fusion on baselines. Likewise, the embedding
level fusion strategy was not the most effective method. The
proposed AMFIs definitely improved the performance of the
LID task. The improvements outperformed the other integra-
tion systems, while AMFI 2 was better than AMFI 1 in the LID
task, reaching 8.12% in terms of the EER value.

4.3. Similarities in Two Speech Classification Tasks

The trends in the results are shown in Figure 4, in which the hor-
izontal ordinates indicate the number of systems corresponding
to Table 1, and the Y-ordinates show the values of EER (%).
From the comparisons of Table 1 and Figure 4, in spite of the
region of EER values that are different between the two tasks,
there were some similarities in the two classification tasks. For
MEFI integration patterns, the best configuration was the frame
level integration on the 5" layer. While, the higher level inte-
grations cannot achieve better performance than the frame lev-
el integration in MFIs. Moeover, the AMFIs yielded the best
performances compared with MFIs and baselines, and AMFI 2
structure obtained superior performance.

5. Conclusions

In this study of ASV and LID tasks, we investigate the per-
formances of multi-level integrations for acoustic features and
employed the time-restricted attention mechanism in the multi-
feature integration structure. In our experiments, we found that
integrating multiple acoustic features at the frame level, espe-
cially the 5" layer, contributes the most in both tasks. This
performance surpassed score level fusion and embedding level
fusion. The proposed attentive multi-feature integration archi-
tecture achieved 28% and 19% relative improvement over the
best baselines in ASV and LID, respectively. The trends in the
experimental results for ASV and LID were similar for feature
integration, which indicates that the multi-feature integration s-
trategy can be generalized for those two speech classification
tasks. In the future, we plan to focus on finding more potential
multi-feature learning strategies.
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