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Abstract
In this paper, we present our XMUSPEECH system for the ori-
ental language recognition (OLR) challenge, AP19-OLR. The
challenge this year contained three tasks: (1) short-utterance
LID, (2) cross-channel LID, and (3) zero-resource LID. We
leveraged the system pipeline from three aspects, including
front-end training, back-end processing, and fusion strate-
gy. We implemented many encoder networks for Tasks 1
and 3, such as extended x-vector, multi-task learning x-vector
with phonetic information, and our previously presented multi-
feature integration structure. Furthermore, our previously pro-
posed length expansion method was used in the test set for Task
1. I-vector systems based on different acoustic features were
built for the cross-channel task. For all of three tasks, the same
back-end procedure was used for the sake of stability but with
different settings for three tasks. Finally, the greedy fusion s-
trategy helped to choose the subsystems to compose the final
fusion systems (submitted systems). Cavg values of 0.0263,
0.2813, and 0.1697 from the development set for Task 1, 2, and
3 were obtained from our submitted systems, and we achieved
rank 3rd, 3rd, and 1st in the three tasks in this challenge, re-
spectively.
Index Terms: AP19-OLR, language identification, x-vector,
multi-task learning

1. Introduction
Language Identification (LID) refers to identifying language
categories from utterances, and it is usually presented at the
front-end of speech processing systems, such as in Automat-
ic Speech Recognition (ASR). To encourage the improvement
of LID technologies and to tackle the real challenge existing
in LID tasks, the oriental language recognition challenge has
been organized annually since 2016, attracting dozens of teams
around the world [1, 2]. The XMUSPEECH team has attended
the OLR challenge since the AP17-OLR.

The AP19-OLR challenge [3] included three tasks. Task
1 involved short-utterance LID from test utterances that were
only one second long, which was the same task format as in
the past two challenges. Task 2 was comprised of cross-channel
LID, which revealed the real-life, practical demands of speech
technology. In Task 3, zero-resource LID, no resources were
provided for training before inference; only several utterances
of each language were offered for language reference. All tasks
were evaluated and ranked separately. The principle evaluation
metric was Cavg, which was defined as the average of the pair-
wise performance of test languages, given Ptarget = 0.5 as the
prior probability of the target language.

We submitted the final results of the three tasks with re-
quired test conditions in this challenge. Our developed systems
consisted of multiple front-end extractors, including i-vector, x-
vector, extended x-vector, multi-feature x-vector, and multi-task

x-vector. After language embeddings were extracted, the same
back-end processing was used for all three tasks, but with dif-
ferent settings given the results of the development sets. The
fusion strategy consisted of equal weight fusion for the subsys-
tems selected from the greedy fusion algorithm.

In this paper, we introduce the details of the XMUSPEECH
system for AP19-OLR, and the rest of this paper is organized as
follows. Section 2 describes the data preparation process, and
Section 3 introduces the methods used to build the systems. The
experimental settings and results of the subsystems for develop-
ment sets and evaluation sets are shown in Section 4. Finally,
the conclusion is given in Section 5.

2. Data Preparation
In this AP19-OLR challenge, additional training materials were
forbidden to participants, and the permitted resources were
several specified data sets, including AP16-OL7, AP17-OL3,
AP17-OLR-test, AP18-OLR-test, and THCHS 30 [4]. Those
data sets included ten languages, which were Mandarin, Can-
tonese, Indonesian, Japanese, Russian, Korean, Vietnamese,
Kazakh, Tibetan, and Uyghur. The detailed descriptions of the
data sets that we used are listed in Table 1.

2.1. Language Identification Training Set

Before training, we adopted two types of data augmentation, in-
cluding speed and volume perturbation, to increase the amount
and diversity of the training data. For speed perturbation, we
applied a speed factor of 0.9 to slow down or 1.1 to speed up
the original recording, and for volume perturbation, a random
volume factor was applied. Finally, two augmented copies of
the original recording were added to the original data set to ob-
tain a 3-fold combined training set. We used the suffix ’−aug’
to indicate the combined training data set.

For Task 1, AP16-OL7, AP17-OL3, AP17-OLR-test, and
THCHS 30 constituted the training set for all Kaldi-based
[5] systems, namely AP19-task-1-train-with-thchs30-aug,
which included ten languages with about 310,000 utterances.
While the AP18-OLR-test was reserved as the development set
for this task. For the training set in Pytorch platform [6], the
THCHS 30 data set was not used due to the time constraints.
Therefore, the training set in Pytorch based systems for Task 1
was named AP19-task-1-train-aug, which included ten lan-
guages with about 280,000 utterances.

For Task 2, to increase the robustness of systems for this
cross-channel task, we used all data sets allowed in this chal-
lenge to train systems with the data augmentation methods men-
tioned above. The training data for Task 2 included AP16-OL7,
AP17-OL3, AP17-OLR-test, AP18-OLR-test, and THCHS 30.
The training set used in Task 2 was named AP19-task-2-
train-aug, which included ten languages with about 360,000
utterances.

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-1923452



Table 1: Data Sets Used in Systems.
Task Encoder Model Training LDA Training & Centering LR Model Training

1
AP19-task-1-train-with-thchs30-aug

AP19-task-1-train-aug
Phonetic-training-set

AP19-task-1-enroll AP19-task-1-enroll

2 AP19-task-2-train-aug AP19-task-2-enroll-aug AP19-task-2-enroll-aug

3
AP19-task-1-train-with-thchs30-aug

AP19-task-1-enroll
Phonetic-training-set

AP19-task-1-enroll AP19-OLR-test-task-3-enroll

Task 3, which had an open set test condition, shared the
exact same training set as Task 1, i.e. AP19-task-1-train-
aug.

2.2. Phonetic Training Set

The AP16-OL7 and AP17-OL3 databases contain lexicons of
all ten languages, as well as the transcriptions of all the training
utterances. These resources were chosen to train ASR models
and to create phonetic alignment labels for multi-task learning
with phonetic information. We named this set the Phonetic-
training-set.

2.3. Enrollment Set

To better match the test condition for Task 1 (short utterance),
the enrollment set for Task 1 contained AP16-OL7, AP17-OL3,
and AP17-OLR-test-task1, which was the short utterance test
set, without data augmentation. AP19-task-1-enroll, includ-
ed ten languages with about 280,000 utterances.

In order to generalize for the cross channel test condition,
we used as much data as possible to compose the enrollment set
for Task 2. The enrollment set is a subset of the training set for
Task 2, in which only the target languages were remained. The
enrollment set is also called AP19-task-2-enroll-aug.

We used the official task 3 enrollment set for Task 3, due to
the open set testing condition.

2.4. Back-end Training Set

As the system procedure consisted of embedding extraction and
a back-end classifier, the selection of the back-end training set
was influential. We utilized the same data set as the Task 1
enrollment set to train the linear discriminant analysis (LDA)
model and to conduct the centering for Task 1 and 3. The en-
rollment set in Task 2 was used for the back-end of Task 2. The
logistic regression (LR) models were trained with the enroll-
ment sets for the respective three tasks.

2.5. Development Set

The organizers released development sets for Tasks 2 and 3, but
there were no new development sets provided for Task 1. So,
the AP18-OLR-test was used as the development set for Task 1.
We noted that the three target languages in the development set
for Task 3 were different from the final test set, and we assumed
that the channel condition in the development set for Task 2 may
also differ from the final test set.

3. System Descriptions
3.1. Feature Extraction

All features were extracted from 16kHz audio data. Three kind-
s of acoustic features were used, including 20-dimensional M-
FCC, 40-dimensional FBank, and 20-dimensional PLP, with 3-
dimensional Kaldi’s pitch features in all systems. All features
had frame-lengths of 25ms, frame-shifts of 10ms, and mean

normalization over a sliding window of up to 3 seconds. Voice
active detection (VAD) was used to filter out non-speech frames.
Note that for multi-feature training models, different kinds of a-
coustic features shared the same VAD based on PLP feature for
the alignment of frames. The feature engineering was executed
using the Kaldi platform.

3.2. Encoder Networks

3.2.1. I-vector

I-vector systems were developed based on the Kaldi SRE16
recipe [5, 7], in which input features are acoustic features with
first and second order derivatives. A full covariance Gaus-
sian mixture model-universal background model (GMM-UBM)
with 2,048 components was trained, along with a 600 dimen-
sional i-vector extractor. We also tried different i-vector config-
urations, but no significant improvement was achieved in this
challenge.

3.2.2. Extended X-vector

Since the extended x-vector architecture (E-TDNN) significant-
ly outperformed the baseline x-vector (TDNN) in most cases
[8, 9], we chose the extended x-vector for this challenge. Com-
pared to the traditional x-vector, the extended x-vector structure
uses a slightly wider temporal context in the TDNN layers, and
it interleaves dense layers between TDNN layers, which leads
to a deeper x-vector model.

3.2.3. Multi-task Learning Model with Phonetic Information

Considering the correlativity between the language identifica-
tion and the phone classification tasks, we utilized multi-task
learning to train those two tasks jointly [10, 11]. To achieve this
goal, ASR models were trained beforehand on the Phonetic-
training-set. Then, based on the ASR models, 6,832 frame-
level alignment labels were obtained for the phone classification
task. In this multi-task learning model, the frame-level hidden
layers represent the shared part that learns the phonetic compen-
sation information for the language task. The gradient descent
of each task affects the shared layers in the frame-level during
training. After training, the language embeddings were extract-
ed from the penultimate layer in the language task branch. This
model is shown in Figure 1 (a).

3.2.4. Multi-feature Learning Model

Due to fact that the data distributions of different acoustic fea-
tures are comparatively dissimilar, the multi-feature integration
structure is used to utilize different kinds of acoustic features
into x-vector systems [12]. In this challenge, we improved the
structure in [12] by replacing the TDNN blocks with the E-
TDNN blocks for deeper learning abilities. In this model, as
shown in Figure 1 (b), while each branch processes one type
of acoustic features at the frame level, the outputs of the two
branches at frame level are spliced together as a super vector
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(a) Multi-task learning model with phonetic information. (b) Multi-feature learning model.

Figure 1: Joint learning models.

before the statistics pooling layer.

3.3. Loss Functions

3.3.1. Loss Function for Multi-task learning

In the multi-task learning model with phonetic information
mentioned in Section 3.2.3, the model includes two separate ob-
jectives: language identification and phone classification. The
total loss function L is the combination of those two sub-losses
Ll and Lp,with a control factor α:

L = Ll + αLp (1)

The hyper-parameter of the α value for mutli-task training
is empirically set to 0.2.

3.3.2. AM-Softmax

AM-softmax [13] is one of the most popular loss function in
classification tasks . The core concepts of AM-softmax are fea-
ture normalization and the adoption of an additive margin in-
to the softmax loss function. The combination of this stronger
loss objective and the deeper encoder network, such as the E-
TDNN x-vector, further improve the performance of subsys-
tems. While only the softmax loss is supported in Kaldi, we
implemented the AM-softmax on Pytorch and built all of the
Pytorch subsystems in the fusion list with AM-softmax as the
loss function.

3.4. Training Strategy

The training process using the Kaldi platform was the same as in
the recipes [5] except for our adjustments to hyper-parameters.

On the Pytorch platform, we found that different settings
for the training chunk size would affect the results in the short
utterance test task. Thus, several Pytorch’s subsystems were
built, and the only difference was in the setting of chunk size,
for instance 50 or 100. We used the suffix ’-chunk 50’ to indi-
cate this difference, etc. Moreover, for Task 3, we assumed that
fewer training epochs may be better for model’s generalization,
so fewer epochs were chosen for Task 3 compared with Task 1.

3.5. Back-ends

The back-ends consisted of linear discriminant analysis (LDA)
dimension reduction, whitening, centering, length normaliza-
tion and logistic regression (LR) for three tasks. We tuned d-
ifferent back-end configurations for the three tasks’ respective

development sets. In Task 1, the LDA dimension was 10 for
Kaldi’s subsystems and 256 for Pytorch’s; in Task 2, the LDA
dimension was 10 for Kaldi’s subsystems and no Pytorch’s sub-
systems were selected for the fusion list; and in Task 3, the LDA
dimension was 512 for all subsystems.

For Task 1, an additional length expansion process was used
for embedding extraction in the test set, which is introduced in
the following Section 3.5.1.

3.5.1. Length Expansion for Short-duration Utterances

We proposed a length expansion method for short-duration ut-
terances, named speed perturbation pooling (SPP) [11]. It en-
riches information and benefits short-duration utterances. SPP
averages x-vectors of differing speeds for the same utterance to
generate a new x-vector and the formulas are as follows:Xsp0.9 = F (xsp0.9)

Xsp1.0 = F (xsp1.0)
Xsp1.1 = F (xsp1.1)

(2)

Xspp =
nsp0.9 ·Xsp0.9 + nsp1.0 ·Xsp1.0 + nsp1.1 ·Xsp1.1

nsp0.9 + nsp1.0 + nsp1.1

(3)
where n is the number of frames in the corresponding utterance,
sp means the speed perturbation, and F (x) denotes the extrac-
tor of a neural network that maps the variable-length acoustic
features x to the fixed-dimensional embeddings.

Formula (3) can be seen as the weighted integration of x-
vectors X for the different speeds.

3.6. Greedy Fusion

Score-level greedy fusion was used to select the most useful
subsystems for the fusion list, given the metric of Cavg in de-
velopment sets. In order to consider robustness in the final fu-
sion list, the final fusion weight was set to be equal for each
subsystem in the final fusion list, rather than other popular fu-
sion approaches, such as using fusion toolkits [14, 15].

In greedy fusion processing, we first selected the subsystem
with the lowest Cavg. Then, we evaluated all the two-system
fusions and obtained the best two systems. We fixed these two
systems and then added a third system, and so on. To reduce
the risk of overfitting, we conducted fusions with only positive
weights.
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Table 2: Results from Three Tasks of AP19-OLR.
Task Platform Model Feature Cavg/EER on Dev Cavg/EER on Eval

1

Kaldi
Baseline.xv [3] MFCC 0.1271/12.37% 0.1257/12.22%
Multi-task.xv PLP+Pitch 0.0475 0.1055
Multi-task.xv MFCC+Pitch 0.0489 0.1076

Pytorch

Extended.xv.chunk100 PLP+Pitch 0.0347 0.0863
Extended.xv.chunk100 MFCC+Pitch 0.0358 0.0874
Extended.xv.chunk50 PLP+Pitch 0.0363 0.0924
Extended.xv.chunk50 MFCC+Pitch 0.0345 0.0909
Extended.xv.chunk50 FBank+Pitch 0.0441 0.0952

Final Fusion 0.0263/2.63% 0.0818/8.65%

2 Kaldi
Baseline.xv [3] MFCC 0.3868/43.13% 0.3720/38.44%

i-vector PLP+Pitch 0.2815 0.2713
i-vector MFCC+Pitch 0.2864 0.2848

Final Fusion 0.2813/28.33% 0.2741/27.44%

3

Kaldi

Baseline.xv [3] MFCC 0.3393/34.47% 0.2027/21.94%
Multi-task.xv PLP+Pitch 0.2027 0.0228
Multi-task.xv MFCC+Pitch 0.2067 0.0214
Multi-task.xv FBank+Pitch 0.2220 0.0120

Pytorch
Multi-feature.xv.chunk100 MFCC+Pitch&PLP+Pitch 0.2438 0.0302

Extended.xv.chunk100 PLP+Pitch 0.2530 0.0521
Extended.xv.chunk100 MFCC+Pitch 0.2682 0.0549

Final Fusion 0.1697/16.67% 0.0113/1.13%

4. Results and Analysis
In this challenge, we built more than thirty subsystems for three
tasks, while only the subsystems used in the final fusion are
reported in this Section. When we developed the subsystems,
the performances were measured by Cavg and the Equal Error
Rate (EER). However, we have omitted the EER results for the
subsystems due to space constraints and the fact that the princi-
ple evaluation metric in this challenge was Cavg. The results
and the subsystem configurations, as well as the results of the
submitted final fusion systems, are all listed in Table 2.

Regarding system platforms, in Task 1, the best single sys-
tem was the Pytorch based system since more flexible training
strategies, such as the Adam optimizer and cosine annealing,
were available and completed on Pytorch. For Task 2, Kaldi’s
i-vector significantly outperformed the other subsystems. As a
result, the final fusion only contained two i-vector subsystem-
s. For Task 3, the Kaldi-based multi-task learning model with
phonetic information achieved the best performance.

For Task 1, the previously proposed SPP method was useful
in this test condition; subsystems that used SPP in the back-
end procedure steadily outperformed those without SPP, and
the reported subsystems in Task 1 in Table 1 all included SPP.
The introduction of phonetic information in multi-task learning
was helpful to this LID task; therefore, Kaldi-based subsystems
without phonetic information were not selected to be part of the
final fusion list. Moreover, the performances of AM-Softmax-
based systems were much better than traditional cross-entropy-
Softmax-based systems in development sets. So, the final fu-
sion subsystems in Pytorch were all trained with AM-Softmax
loss. The different settings for training chunk sizes led to com-
plementary subsystem fusion, and more investigation was re-
quired to understand the reason behind this. All the subsystems
achieved improvements in the Dev, but the performances were
corrupted in the Eval. In the workshop after the evaluation, the
organizer indicated that one language in the Eval was slightly
domain mismatched, resulting this discrepancy.

For Task 2, due to the lack of cross-channel training data, it
was challenging to build a discriminative system that was more
robust than the generative model. We thus built i-vector systems
and all obtained significant improvements compared with the x-

vector baseline. Among the subsystems, the i-vector system
with the PLP feature obtained the best performance for both
Dev and Eval.

For Task 3, under the zero-resource testing condition, the
introduction of phonetic information into the language model-
ing network was extremely useful to improve the robustness.
However, the performance trends in Dev and Eval were re-
versed in three multi-task learning subsystems; we assumed it
might be the over-fitting issue, though further analysis is re-
quired. On the Pytorch platform, strong robustness was revealed
in the mutli-feature learning model. The performance gap of the
multi-feature model between Dev and Eval was considerably
smaller than the subsystems based on single features, as sub-
systems using only one kind of acoustic feature were probably
overfitted, even if we reduced the number of epochs.

Overall, from the three tasks, some conclusions have been
found: (1) the PLP feature was more effective than other acous-
tic features for LID; (2) data augmentation was beneficial in
both discriminative and generative models; and (3) score-level
fusion with an appropriate fusion strategy yielded further im-
provements.

5. Conclusions

In this paper, we illustrate the details of XMUSPEECH systems
for the AP19-OLR challenge. In this challenge, many meth-
ods, including our previously proposed methods such as multi-
feature learning and length expansion for short-duration utter-
ances, were investigated in three tasks. The final submitted sys-
tems were fusion of multiple subsystems, which improved the
performances and the robustness in the three tasks. In the fu-
ture, we will analyze the influence of training strategies (chunk
size, etc.), and explore solutions for cross-channel tasks under
the condition of no additional training materials.
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