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Abstract
Optimal fusion of streams for ASR is a nontrivial problem.
Recently, so-called posterior-in-posterior-out (PIPO-)BLSTMs
have been proposed that serve as state sequence enhancers and
have highly attractive training properties. In this work, we adopt
the PIPO-BLSTMs and employ them in the context of stream
fusion for ASR. Our contributions are the following: First, we
show the positive effect of a PIPO-BLSTM as state sequence
enhancer for various stream fusion approaches. Second, we
confirm the advantageous context-free (CF) training property of
the PIPO-BLSTM for all investigated fusion approaches. Third,
we show with a fusion example of two streams, stemming from
different short-time Fourier transform window lengths, that all
investigated fusion approaches take profit. Finally, the turbo fu-
sion approach turns out to be best, employing a CF-type PIPO-
BLSTM with a novel iterative augmentation in training.
Index Terms: Speech recognition, Multi-size windows,
Multistream-HMM, Turbo fusion, Recurrent neural networks

1. Introduction
The last decade introduced a vast variety of neural network-
based methods, reducing error rates of automatic speech recog-
nition (ASR) systems significantly. For acoustic modeling, the
first successfully trained deep neural networks [1] triggered the
rediscovery of convolutional neural networks [2, 3], time-delay
neural networks [4, 5] and recurrent neural networks [6, 7]. All
of these architectures use different strategies to incorporate tem-
poral context into acoustic modeling or into ASR in general,
which is of great importance for speech recognition, since rele-
vant information of a spoken phoneme is distributed over a tem-
poral span of up to half a second around a central time frame [8].
For recurrent long-short term memory (LSTM) networks that
are able to use somewhat unlimited temporal context through
their recurrence, it has been stated in [9] that the common use
of temporal input context as spliced features is not beneficial.
Moreover, recently it has been shown that BLSTMs can be ef-
fectively combined with models that indeed use large temporal
context, however, a modularly trained posterior-in-posterior-out
(PIPO)-BLSTM with context-free (CF) BLSTM training gave
best results [10]. Due to the state posterior representation both
at the input and output of a PIPO-BLSTM, it can then be advan-
tageously combined with large context feature extractors in in-
ference. This is an interesting novel property of PIPO-BLSTMs
which we make use of in this work.

Optimal fusion of streams for ASR is a problem unsolved.
For a jointly trained system, the common way is to simply
combine different feature types at the acoustic model’s input
by stacking (as for example in [11]). Modular fusion ap-
proaches use posterior combinations as for example the multi-

stream HMM (MSHMM) approach [12, 13], where posterior
outputs of several acoustic models are simply subject to stream
exponents and multiplied before decoding. The turbo fusion
method [14, 15, 16] uses an iterative exchange of probabilistic
information between systems to improve recognition. Further
methods combine systems at output-level based on confusion
network combination [17] or word hypothesis output [18].

The effectiveness of information fusion increases with the
complementarity of the fused information sources. One promi-
nent fusion task yielding robustness in noisy conditions is au-
diovisual speech recognition [19, 20, 21], suitable for applica-
tions that provide additional visual sensors. Fusion in single-
channel scenarios is conducted using different feature types
(e.g., magnitude and phase features [16, 22], filterbank and fM-
LLR features [23], and several others...) or combining a variety
of multiple acoustic models [17, 24]. Another rather unexplored
source of complementarity might arise from different temporal
and spectral resolutions in feature extraction. ASR with short-
time Fourier transform (STFT)-based features usually applies
only a single window size and frame shift and is thereby quite
limited. An early approach to overcome this drawback of the
STFT is the use of wavelet functions [25], while a lot of re-
cent research is focusing on the use of the raw speech signal
directly as input for recognition to circumvent this drawback
completely [26]. Concerning common practice in ASR, a win-
dow size of 25 ms with a frame shift of 10 ms are used, while a
wider range of 15 ms to 35 ms is recommended in [27]. Recent
research in [28] also hints that especially short phonemes might
ineffectively be captured by the commonly used window size.

In this paper, for the first time the recently proposed modu-
lar PIPO-BLSTMs are employed as state stream enhancers in a
stream fusion setup. As an example application, we investigate
whether combining different window sizes improves recogni-
tion on phone level on the TIMIT task and compare several fu-
sion methods for this particular multi-size window fusion sce-
nario. In this paper, we focus on a comparison of fusion meth-
ods and do not strive for a new benchmark on TIMIT, which to
our knowledge is reported using Li-GRU acoustic models with
several effective training techniques in [23]. We conduct exper-
iments using the context-free (CF) training strategy of PIPO-
BLSTMs proposed in [10] to gain insight if it also provides
benefits to fusion tasks. Finally, for turbo fusion, we introduce
a new training method to PIPO-BLSTMs using augmentation
with iteratively created data.

The paper is structured as follows: In Section 2, we briefly
review information fusion strategies and introduce the new
PIPO-BLSTM-based turbo fusion method. Section 3 describes
the setup of the fusion experiments on the TIMIT phone recog-
nition task, while corresponding results are reported and dis-
cussed in Section 4. The paper concludes in Section 5.
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Figure 1: Processing of the feature combination fusion
FComb(-PIPO). Fusion is performed by combining first and
second window size features (shown as red and blue layers) as
a set of input channels for the convolutional input layer. Time
indices t are omitted.

2. Information Fusion Approaches
2.1. Fusion by Feature Combination (FComb)

The most common and intuitive fusion method is the simple fea-
ture combination, usually performed by concatenating feature
vectors to a joint feature representation yt = [oT

t ,u
T
t ]T, with

( )T being the transpose. Here, two input feature streams o and
u, emerging from different DFT window sizes, are spliced with
Tc = 4 frames to each side (resulting in ot+Tc

t−Tc
and ut+Tc

t−Tc
).

As depicted in Figure 1, for the convolutional neural network
(CNN, see Section 3.3 for details) we use both feature rep-
resentations together as a combined set of input channels (3
channels each: static, ∆, and ∆∆ coefficients) at the convo-
lutional input layer (which is possible due to the equal feature
dimension d in this multi-size window fusion scenario). After
the CNN, a PIPO-BLSTM (see Section 3.4 for details) is em-
ployed as a state sequence enhancer (method FComb-PIPO);
in case the PIPO-BLSTM is omitted, we call the approach sim-
ply FComb. The output posteriors γ and (or b for the FComb
approach) are then transformed into the recognized phone se-
quences (wR

1 )∗ of lengthR by a weighted finite state transducer
(WFST)-based decoder from the Kaldi toolkit [29] employing
HMM topology constraints, and (for phoneme recognition) a
simple phone-based language model. No hyperparameter is re-
quired, but as soon as feature representation o or u changes,
CNN (and PIPO-BLSTM) need to be retrained.

2.2. Fusion by Multi-Stream HMM (MSHMM)

A second simple modular fusion method for systems with equal
HMM state spaces and a synchronous frame shift is the multi-
stream HMM (MSHMM) approach, where both input streams
are now separately analyzed by two convolutional neural net-
works, yielding two streams of output posterior vectors b(s)

and b(r) (indices (s) and (r) identify entities belonging to one
of the streams). As shown in Figure 2, both streams of poste-
riors are combined with an element-wise multiplication � af-
ter exponential weights θs and θr are applied to the individual
streams [12, 13]. For the two investigated variants, either a sin-
gle PIPO-BLSTM is employed after the actual fusion multipli-
cation (early fusion variant, dubbed MSHMM-PIPOe) or two
individual PIPO-BLSTMs (s) and (r) are used before the final
fusion (`ate fusion variant, dubbed as MSHMM-PIPO`. In case
no PIPO-BLSTM is employed at all, we call the approach sim-
ply MSHMM. The fused posteriors are normalized per frame
before decoding. The two posterior stream weights are fusion
hyperparameters for all MSHMM-based methods.
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Figure 2: Processing of the multi-stream HMM fusion
MSHMM-PIPOe (early) or MSHMM-PIPO` (late).

2.3. Turbo Fusion
The original turbo fusion approach for speech recognition—
comprehensively introduced in [14]—employs two compo-
nent recognizers based on a modified forward-backward al-
gorithm. Here we replace both component recognizers with
two posterior-in-posterior-out (PIPO-)BLSTMs [10], which are
well-suited for the iterative exchange of such posterior proba-
bilities γ(s) and γ(r).

The turbo fusion approach (Turbo-PIPO), depicted in Fig-
ure 3 works as follows: Both input streams are separately ana-
lyzed by two CNNs (as for the MSHMM approaches). Consid-
ering the first PIPO-BLSTM indexed by (s), the CNN outputs
b(s) are combined with an additional a priori probability g(s)

by a simple element-wise multiplication b(s) � g(s), before be-
ing normalized per frame and fed into the input layer of the
PIPO-BLSTM (s). Starting with the first iteration, g(s) is an
all-one vector 1, as depicted by the switch in Figure 3, while
for all following iterations the a priori probabilities g(s) and
g(r) emerge from the opposite PIPO-BLSTM through the iter-
ative loop, illustrated as green connections. After each iteration
z (which we define as one call of one of the PIPO-BLSTMs),
output posteriors γ(s) and γ(r) are subject to decoding, yielding
phone sequences (wRs

1 )∗ and (wRr
1 )∗.

In between both PIPO-BLSTMs, two limiters employ a
simple yet effective mechanism to control the amount of infor-
mation in the exchanged posterior vectors as proposed in [15].
Upper and lower limits are applied to the logarithmic values
of the exchanged posterior probs γ to weaken the impact of
peaky posterior distributions and allow a less biased ”discus-
sion” (exchange of information) between both PIPO-BLSTMs.
The opening of the limiters is linearly increased over iterations
z towards a final dynamic range in the zmax-th iteration which
is controlled with one fusion hyperparameter for each limiter.

3. Experimental Setup
3.1. Database
To capture effects of different window sizes on phone level and
to evaluate performance without the blurring influence of so-
phisticated language models, recognition experiments in this
work are conducted on the well-known TIMIT database [30].
For training of all acoustic models, we use the 462 speaker train-
ing set with the SA-tagged dialect records being removed. Per-
formance is reported for the standard core test set comprising
192 sentences of 24 speakers. For cross-validation during CNN
and PIPO-BLSTM training, we use a separate 50 speaker de-
velopment set, disjoint from the core test set. We use the com-
plete 61 distinct TIMIT phonemes yielding N = 183 HMM
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Figure 3: Processing of the iterative turbo fusion with parallel streams of CNN-based acoustic posteriors b(s) and b(r). For the Turbo-
PIPO(IA-CF) approaches, the output posteriors from both non-optional PIPO-BLSTMs (s) and (r) are iteratively exchanged. While
the first PIPO-BLSTM (s) is active in iterations z=1, 3, 5, ..., and the other PIPO-BLSTM (r) is active in iterations z=2, 4, ..., both
process feature sequences of individual window sizes. For evaluation of each iterations phone error rate, the (identical) standard de-
coders are fed with the respective posterior γ(s) or γ(r) of that active PIPO-BLSTM. The block colors correspond to the respective DFT
window sizes (e.g., red-lined pattern for the 30 ms window and blue-dotted for the 10 ms window), while for the Baseline-PIPO(-CF)
approaches only blocks with the same color are active for one particular window size.

states with 3 states per phoneme. For scoring, the decoded
phoneme sequences (wR

1 )∗ are merged into the smaller phone
set comprising 39 phonemes, according to [31]. Based thereon,
we measure recognition performance in terms of phone error
rate given as PER =

(
1 − N−D−I−S

N

)
with N , D, I , S

being the amount of labeled words, deletions, insertions, and
substitutions, respectively. To assure comparability with com-
mon TIMIT results, we used identical settings as for example
in [1, 32, 3, 33, 34, 10].

3.2. Input Streams: Multi-Size Windows
We investigate several combinations of smaller-than-standard
window sizes (≤ 25 ms) with larger window sizes (≥ 25 ms)
of the Hamming window used in the discrete Fourier transform
(DFT) that analyzes the original raw speech sampled at 16 kHz.
To enable a synchronous fusion of different window sizes, we
used a constant frame shift of 10 ms for all window sizes, even
though a variation of the frame shift might also reveal comple-
mentarity in the temporal resolution. The emerging different
amounts of DFT coefficients are processed by a standard mel
filterbank resulting in 40 static feature coefficients for all win-
dow sizes. In addition, logarithmic energy was appended as
well as first- and second-order derivatives (that are treated as
separate input channels for the CNN acoustic models) yielding
a total amount of d = 123 acoustic feature coefficients ot per
time frame t. All input feature coefficients are normalized to
zero mean and unit variance on the training set.

3.3. Acoustic Models: Convolutional Neural Networks
The employed CNNs—extracting posteriors b(s) and b(r) from
the input features for both streams—employ limited weight
sharing [35] in the convolutional input layer, dividing the 9-
frame spliced input context into three blocks in the temporal di-
rection and into seven sections along the spatial domain (please
refer to [10] for a detailed illustration of this CNN). As in [36],
we use a hierarchical structure, where the three input blocks are
first processed seperately in the lower CNN part and are subse-
quently merged in an upper part with a bottleneck layer of 400
nodes, followed by 3 fully-connected layers of 1024 nodes and
a standard softmax output layer, where posteriors b emerge. We
employ dropout as well as batch normalization to all layers. In
total, all CNNs comprise a total of 8.48 M parameters (except
for the FComb approach where CNNs have 8.59 M parameters
due to the larger input layer).

3.4. State Sequence Enhancement: PIPO-BLSTMs
The topology of our PIPO-BLSTMs is a simple stack of three
bidirectional hidden LSTM layers with input and output layers
having the same dimension of N = 183 context-independent
phoneme HMM states. All hidden bidirectional layers employ
350 units for each direction. The layer outputs in forward and
backward directions are concatenated, yielding an output of 700
units that is passed on to the subsequent layer. No peephole
connections are used and we apply a dropout probability of 0.45
only to the outputs between each LSTM layer, except for the
last. In total, each PIPO-BLSTM consists of 7.51M parameters.

Instead of being trained with acoustic features, PIPO-
BLSTMs are trained with state posteriors, that emerge from any
acoustic model (in our case the previously described CNNs).
Due to the posterior input layer it is possible to use the PIPO-
BLSTM in a modular fashion with any other model that has
been trained in the same posterior domain as the PIPO-BLSTM.
In the detailed investigation in [10] it has been shown that in-
deed PIPO-BLSTMs are most effective when the posteriors in
training emerge from CNNs without input context (Tc = 0), and
are inferred with posteriors b stemming from CNNs that indeed
use large temporal input context (in our experiments Tc = 4).
Approaches with PIPO-BLSTMs that include this context-free
training strategy are tagged with the suffix -PIPO-CF.

Due to the iterative call of the PIPO-BLSTMs in the turbo
fusion method, we can augment the training data by using the
respective PIPO-BLSTM’s input from all zmax = 5 iterations
on the training dataset, utilizing the fusion hyperparameters
found for the Turbo-PIPO-CF approach. This iterative aug-
mentation can exclusively be used for the Turbo-PIPOIA-CF
approach, where we use the retrained PIPO-BLSTMs (s) and
(r) with the same set of parameters during inference.

3.5. Model Training and Fusion Hyperparameters
In our experiments, CNN and PIPO models are trained sep-
arately. More precisely, PIPO-BLSTMs are trained on CNN
outputs, with CNN weights fixed. The PIPO-BLSTM of the
MSHMMe-PIPO is trained on the already fused CNN output
streams. All models are trained to minimize the cross entropy
(CE) loss with stochastic gradient descent learning. As ground
truth we use context-independent state targets. Learning rates
start at 0.1 and are halved, once the CE loss does not decrease
on the TIMIT development set data. For fusion hyperparameter
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Single window size Development set Core test set
baseline approaches 10ms 20ms 25ms 30ms 50ms Avg. 10ms 20ms 25ms 30ms 50ms Avg.

Baseline 19.63 18.62 18.40 18.76 18.77 18.84 21.65 20.49 20.29 20.79 20.57 20.76
Baseline-PIPO 18.69 17.53 17.69 17.79 17.95 17.93 20.94 19.78 19.51 20.51 19.79 20.10
Baseline-PIPO-CF 18.42 17.23 17.53 17.63 17.88 17.74 20.40 19.79 19.50 19.88 19.61 19.83

Table 1: Phoneme error rates (in %) for baseline approaches using a single window size.

Multiple window size
fusion approaches

Development set Core test set

10ms
30ms

10ms
50ms

10ms
25ms

20ms
30ms

25ms
50ms Avg. 10ms

30ms
10ms
50ms

10ms
25ms

20ms
30ms

25ms
50ms Avg.

FComb 18.67 18.77 18.79 18.93 18.60 18.75 20.58 20.61 20.28 20.64 20.68 20.56
MSHMM 18.28 18.21 18.14 18.18 18.07 18.18 20.36 20.08 20.15 19.96 19.97 20.10

FComb-PIPO 17.25 17.70 17.68 17.69 17.33 17.53 19.42 19.67 19.47 19.81 19.70 19.61
MSHMMe-PIPO 17.27 17.28 17.48 17.25 17.36 17.32 19.70 19.58 19.57 19.92 19.40 19.63
MSHMM`-PIPO 17.06 17.08 17.27 16.98 17.13 17.10 19.54 19.06 19.27 19.56 19.07 19.30
Turbo-PIPO 17.01 16.98 17.22 16.96 17.12 17.06 19.57 18.99 19.10 19.47 19.07 19.24

FComb-PIPO-CF 16.99 17.51 17.88 17.35 17.23 17.39 19.13 19.31 19.57 19.20 18.99 19.24
MSHMMe-PIPO-CF 16.77 17.05 17.19 16.78 17.15 16.99 18.97 18.95 18.99 19.15 18.85 18.98
MSHMM`-PIPO-CF 17.10 17.07 17.10 16.87 16.98 17.02 19.28 18.75 18.99 19.21 19.07 19.06
Turbo-PIPO-CF 16.98 16.95 17.03 16.76 16.90 16.92 19.04 18.77 18.89 18.96 18.92 18.91

Turbo-PIPOIA-CF 16.34 16.18 16.47 16.51 16.27 16.35 18.35 18.50 18.24 18.89 18.02 18.40
Table 2: Phoneme error rates (in %) for fusion approaches using multiple window sizes. All -PIPO approaches use the PIPO-BLSTM
for fusion and the additional -CF suffix denotes the PIPO-BLSTM training strategy with context-free posteriors. The use of iterative
training data augmentation (exclusive to turbo fusion) is dubbed Turbo-PIPOIA-CF. Best results are printed bold.

tuning of the MSHMM and turbo fusion approaches, we used a
Bayesian optimization algorithm [37] after a quasi-random ini-
tialization of the two-dimensional search space. For the Turbo-
PIPO approaches we simulated both possible successions of
initial PIPO-BLSTMs ((r) or (s)) using zmax = 5 iterations
and choose the one iteration with the best PER of both succes-
sions on the development set. All models used in this paper
were trained with the PyTorch toolkit [38] while acoustic filter-
bank features and context independent HMM state targets for
training were acquired using the Kaldi toolkit [29].

4. Results and Discussion
Considering first the single-window-size baseline approaches
shown in Table 1 using only CNNs for different window sizes
(Baseline), our results confirm the good choice of 25 ms as
the standard window size for ASR with a phoneme error rate
(PER) of 20.29% on the TIMIT core test set, while most other
window sizes perform only slightly worse. Using the additional
PIPO-BLSTM (Baseline-PIPO) improves the performance of
all window sizes by 0.66% absolute and by another 0.27% ab-
solute on average on the test set when using the context-free
training strategy (Baseline-PIPO-CF) from [10].

For fusion experiments we investigate several combina-
tions of DFT window sizes shown in the columns of Ta-
ble 2. Comparing fusion approaches without the involvement
of BLSTM layers (1st and 2nd row), the MSHMM approach out-
performs the FComb approach, suggesting that fusion hyper-
parameters on posterior-level indeed help, as a good balance
of both streams appears to be difficult to learn implicitly by
the FComb models. As expected, the PERs of all fusion ap-
proaches with the PIPO-BLSTM structure (tagged as -PIPO,
3rd to 6th row) decrease as the PIPO-BLSTM is able to cap-
ture more temporal information compared to the limited con-
text (TC = 4) at the CNN’s input layer. Among all -PIPO ap-
proaches, MSHMM`-PIPO and Turbo-PIPO perform best and

quite close to each other. Using the context-free PIPO-BLSTM
training (-PIPO-CF, 7th to 10th row) we substantiate the re-
sults from [10] as all fusion methods take profit from this train-
ing strategy. Especially MSHMMe-PIPO-CF improves from
the CF training with an average PER decrease of 0.65 % ab-
solute on the test set, making it the third strongest fusion ap-
proach in this study only slightly behind the Turbo-PIPO-CF
approach, which is second best among all approaches both on
development and test data with average PERs of 16.92% and
18.91%, respectively. The best overall performance is achieved
by Turbo-PIPOIA-CF, which strongly profits from retraining
the PIPO-BLSTMs with the training data augmented by the it-
erative PIPO-BLSTM inputs, achieving a PER improvement of
2.8% relative on the test set compared to the best of all other
approaches (Turbo-PIPO-CF). Compared to a single window
approach (Baseline-PIPO-CF, 25 ms, 19.50%), the best PER
by the 25/50 ms Turbo-PIPOIA-CF approach (18.02%) is a re-
markable PER decrease of 8.2% relative on the test data.

5. Conclusion
In this contribution we investigate several stream fusion ap-
proaches on a multi-size window fusion example. We
show that the recently proposed posterior-in-posterior-out
(PIPO-)BLSTM state sequence enhancer provides benefit to all
fusion approaches, especially when they are trained on (input)
context-free feature extractor networks. The fusion approach
that profits the most from the PIPO-BLSTM is turbo fusion that
is best among all other approaches. Utilizing a novel training
strategy, where PIPO-BLSTMs are trained with iteratively gath-
ered data, the turbo fusion outperforms the best single-window
setup by 8.2% relative.
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