
Compressing LSTM Networks with Hierarchical Coarse-Grain Sparsity

Deepak Kadetotad1,2, Jian Meng1, Visar Berisha1, Chaitali Chakrabarti1, and Jae-sun Seo1

1School of ECEE, Arizona State University
2Starkey Hearing Technologies

jaesun.seo@asu.edu

Abstract
The long short-term memory (LSTM) network is one of the most
widely used recurrent neural networks (RNNs) for automatic
speech recognition (ASR), but is parametrized by millions of
parameters. This makes it prohibitive for memory-constrained
hardware accelerators as the storage demand causes higher de-
pendence on off-chip memory, which bottlenecks latency and
power. In this paper, we propose a new LSTM training tech-
nique based on hierarchical coarse-grain sparsity (HCGS), which
enforces hierarchical structured sparsity by randomly dropping
static block-wise connections between layers. HCGS maintains
the same hierarchical structured sparsity throughout training and
inference; this reduces weight storage for both training and in-
ference hardware systems. We also jointly optimize in-training
quantization with HCGS on 2-/3-layer LSTM networks for the
TIMIT and TED-LIUM corpora. With 16× structured compres-
sion and 6-bit weight precision, we achieved a phoneme error
rate (PER) of 16.9% for TIMIT and a word error rate (WER) of
18.9% for TED-LIUM, showing the best trade-off between error
rate and LSTM memory compression compared to prior works.
Index Terms: long short-term memory, speech recognition,
weight compression, structured sparsity

1. Introduction
The advent of internet of things (IoT) and edge computing has
created a demand for energy-efficient deep neural networks
(DNNs) for mobile devices. The particular challenge of per-
forming on-device ASR is that state-of-the-art LSTMs for ASR
contain tens of millions of weights [1, 2]. Considering that
off-chip memory access consumes high energy, it is crucial to
store most or all weights on-chip through sparsity/compression,
weight quantization, and network size reduction.

DNN compression has been heavily studied in the litera-
ture [3–8]. Magnitude-based pruning has shown large compres-
sion [3,9], but the index storage can be a large burden, especially
for the simple coordinate (COO) format that stores each non-
zero weight’s location. The compressed sparse row/column
(CSR/CSC) format [10] reduces the index cost as only the dis-
tance between non-zero elements in a row/column is stored, but
still requires non-negligible index memory and causes irregular
memory access [6]. To that end, row-/column-/block-wise struc-
tured compression techniques have been proposed [5–7, 11, 12],
which minimizes the index storage, enables regular memory
access, and enhances hardware acceleration [13–15].

Several recent works have jointly optimized compression
and low-precision quantization [13, 15, 16], where the relative
cost of index storage for compressed DNNs with low-precision
weights will be even higher. Using the three aforementioned
compression methods, COO, CSC, and structured sparsity, Fig-
ure 1 shows the comparison of index memory overhead for a
512×512 weight matrix with 4-bit weight precision, for com-

Figure 1: Comparison of index and 512×512 weight memory
for 4-bit weights with 4×, 8×, and 16× compression.

pression targets from 1× (dense network) to 16× (6.25% of
weights are non-zero). In this work, we introduce hierarchi-
cal block-wise sparsity for weight matrices in LSTMs, which
substantially reduces the index overhead to <1.3% (Figure 1).

For LSTM based RNNs, obtaining structured sparsity can be
more challenging compared to multi-layer perceptrons (MLPs)
or convolutional neural networks (CNNs) due to the temporal
dependency of the recurrent units. In addition, aggressively
compressing RNNs without taking into consideration the inter-
connected gates in LSTMs will lead to a mismatch in the dimen-
sion of weight matrices and adversely impact accuracy [11]. To
minimize accuracy loss while maintaining a large compression
rate, we propose hierarchical coarse-grain sparsity (HCGS) for
LSTMs. We enforce a hierarchically sparse structure between
LSTM layers before training, by randomly selecting large blocks
and then randomly selecting small blocks recursively within the
selected large blocks. Such hierarchical block-wise sparsity is
maintained statically throughout training and inference, which
can aid storage/computation reduction of hardware accelerators.

Preliminary HCGS algorithm and hardware accelerator de-
sign was reported in [14], while this work presents algorithm
enhancement with in-training quantization [17], further anal-
ysis on multi-tier HCGS, in-depth investigation on LSTM de-
sign with optimal memory, and comparison to learned sparsity
methods. We train 2-/3-layer LSTMs for the TIMIT [18] and
TED-LIUM [19] corpora. With 16× structured compression
and 6-bit weight precision, we achieved 16.9% PER for TIMIT
with 0.3 MB of total LSTM weight memory, and 18.9% WER
for TED-LIUM with 1 MB weight memory. By evaluating var-
ious compression and quantization values on different sizes of
LSTMs, we determine the Pareto-optimal designs, where HCGS-
based LSTMs show the best trade-off between error rate and
weight memory compared to prior works. Code for this work is
available at https://github.com/razor1179/.
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Figure 2: Proposed HCGS-based structured compression.

2. HCGS based LSTM training
2.1. Long short-term memory RNN

RNNs construct consecutive hidden states {h1, h2, ..., hT } by
processing corresponding input sequence {x1, x2, ..., xT }. Each
hidden state is implicitly trained to remember task-relevant as-
pects of preceding inputs, and is incorporated with new inputs
via a recurrent operator, T . This operation converts the previous
hidden state and the present input into a new hidden state, e.g.,

ht = T (ht−1, xt) = tanh(Wxt + Uht−1 + b), (1)

where W and U are weights for the feed-forward and recurrent
structures, respectively, and b is the bias parameter.

In addition to the hidden state ht, LSTM introduces a mem-
ory cell ct, intended for internal long-term storage. The param-
eters ct and ht are computed via input, output, and forget gate
functions. The forget gate function ft directly connects ct to the
memory cell ct−1 of the previous timestep via an element-wise
multiplication. Large values of the forget gates cause the cell
to remember most (if not all) of its previous values. Each gate
function has a weight matrix and a bias vector; we use subscripts
i, o and f to denote parameters for the input, output and forget
gate functions, respectively, e.g., the parameters for the forget
gate function are denoted by Wf , Uf , and bf .

2.2. Hierarchical coarse-grain sparsity (HCGS)

We propose hierarchical coarse-grain sparsity (HCGS) for
LSTM training. Figure 2 illustrates the HCGS implementation
for weight matrices in LSTMs, where the connections between
feed-forward layers and recurrent layers are dropped in a hier-
archical and recursive block-wise manner. The example shown
in Figure 2 has a two-tier hierarchy, where the first tier connec-
tions are dropped randomly in large blocks (i.e. grey blocks).
Within the preserved connections in the first tier (grey blocks),
the second tier connections are then dropped randomly in smaller
colored blocks to achieve further sparsity. Only the weights that
are preserved through both tiers of hierarchy are trained and
employed for inference. This random block selection is stored
in a connection mask (CW or CU in Algorithm 1) at the start of
training and fixed throughout training. The connection mask only
contains 0′s and 1′s, where 0′s signify the deleted connections
and 1′s represent the preserved block-wise connections.

The indices needed for HCGS networks in Figure 2 also
have two tiers. The first tier index stores the location of the
grey block within the weight matrix, and the second tier index

Algorithm 1 Training LSTM with HCGS. ◦ indicates element-
wise multiplication, C is the cost function for a minibatch, λ is
the learning rate decay factor, and L is the number of layers.

Require: a minibatch of inputs and targets (x, a∗), previ-
ous weights W and U , HCGS mask CW and CU as well as
previous learning rate η.
Ensure: updated weights W t+1 and U t+1 and updated learn-
ing rate ηt+1.
Forward Propagation:
for k = 1 to L do
Wki,f,o,c ←Wki,f,o,c ◦ C

W
k

Uki,f,o,c ← Uki,f,o,c ◦ C
U
k

hk,t ← Compute(Wki,f,o,c , Uki,f,o,c , xk,t) {via (1)-(5)}
xk+1,t ← hk,t

end for
Backward Propagation:
gWki,f,o,c

and gUki,f,o,c
are the gradients calculated for each

layer k from 1 to L and are represented below as gWk and gUk

respectively for simplicity. Similarly Wki,f,o,c and Uki,f,o,c

are represented as Wk and Uk.
Parameter Update:
for k = 1 to L do
gWk ← gWk ◦ C

W
k

W t+1
k ← Update(Wk, η, gWk )

gUk ← gUk ◦ C
U
k

U t+1
k ← Update(Uk, η, gUk )

ηt+1 ← λη
end for

represents the smaller block’s location within the larger grey
block. The HCGS hierarchy can be expanded to have multiple
tiers of block-wise sparse structure, recursively selecting even
smaller blocks within smaller blocks.

Algorithm 1 shows the computational changes required to
incorporate HCGS in LSTM training. The binary connection
mask is initialized for every layer of the feed-forward network
(CW ) and the recurrent network (CU ), which forces the deleted
weight connections to zero during the forward propagation. Dur-
ing back-propagation, the HCGS mask ensures that the deleted
weights do not get updated and remain zero throughout training.

To further increase compression efficiency, weights associ-
ated with the four gates in each LSTM layer share the common
connection mask that is randomly selected. Sharing the same
random mask results in 4× reduction of the index memory, and
reduces the computations for decompression by 4× as well.
Compared to cases where different random masks were used for
the four gates, sharing the same random mask did not affect PER
or WER by more than 0.2% across all our LSTM experiments.

2.3. Guided coarse-grain sparsity (guided-CGS)

To benchmark the proposed pre-determined random sparsity
against variants of learned sparsity methods, we introduce a
guided block-wise sparsity method called guided coarse-grain
sparsity (Guided-CGS). Unlike HCGS where the blocks are
chosen randomly, Guided-CGS implements a magnitude-based
selection criteria to select blocks that contain the largest absolute
mean weights, and the unselected blocks will be zero. The
magnitude-based selection is executed after one epoch of training
with group Lasso [20]. This method ensures that the weight
block selection is done through group Lasso based optimization,
instead of being randomly chosen.

22



2.4. Quantizing LSTM networks

A technique to achieve high accuracy with very low-precision
quantization was proposed in [17], where weights of the DNN
were quantized during training. We employed similar in-training
quantization schemes that jointly optimize block-wise sparsity
and low-precision quantization. During the forward propaga-
tion part of the LSTM training, each weight is quantized to n
bits, while the backward propagation part employs full-precision
weights. This way, the network is optimized to minimize the
cost function with n-bit precision weights. The n-bit quantized
weights are represented in (2) and steps to make quantized copies
of the full-precision weights are shown in Algorithm 2.

W qn = Quantization(W, n) (2)

Algorithm 2 Quantization. ◦ indicates element-wise multiplica-
tion and / is element-wise division.

Require: weights W , quantize bits n.
W ← clamp(W,−1, 1)
W sign ← Sign(W )

W qn ← ( ceil(abs(W )◦2n−1)

2n−1 ) ◦W sign

The parameter update section in Algorithm 1 is adapted to
include the process of updating the batch normalization param-
eters. Back-propagation through time (BPTT) [21] is used to
compute the gradients by minimizing the cost function using
the quantized weights W qn , but the full-precision weight copies
(W ) are updated to ensure the network is optimized to reduce
the output error for quantized weights.

3. Experiments
3.1. Experimental setup

For the speech recognition tasks, the input consists of 440 feature
space maximum likelihood linear regression (fMLLR) features
[22] that are extracted using the s5 recipe of Kaldi [23]. The
fMLLR features were computed using time window of 25ms
with an overlap of 10ms. We use the PyTorch-Kaldi speech
recognition toolkit [24] to train the LSTM networks. The final
LSTM layer generates the acoustic posterior probabilities, which
are normalized by their prior and then conveyed to a hidden
Markov model (HMM) based decoder. An n-gram language
model derived from the language probabilities is merged with
the acoustic scores by the decoder. A beam search algorithm is
then used to retrieve the sequence of words uttered in the speech
signal. The final error rates for TIMIT and TED-LIUM corpora
are computed with the NIST SCTK scoring toolkit [25].

For TIMIT, we considered the phoneme recognition task
(aligned with the Kaldi s5 recipe) and trained 2-layer uni-
directional LSTMs, with 256, 512, and 1,024 cells per layer.
For TED-LIUM, we targeted the word recognition task (aligned
with the Kaldi s5 recipe) and trained 3-layer uni-directional
LSTMs, with 256, 512, and 1,024 cells per layer. We evaluated
all possible combinations of power-of-2 block sizes, and the PER
for TIMIT and WER for TED-LIUM were relatively constant,
showing the robustness of HCGS across different block sizes.

3.2. Improvements due to HCGS

We observe improvements in error rates when we train LSTMs
with HCGS. Figure 3 shows the PER improvement due to the
hierarchical structure in two-tier HCGS scheme, compared to

Figure 3: PER (TIMIT) comparison between single-tier CGS
and multi-tier HCGS schemes.

the single-tier CGS scheme reproduced from [5]. The results
for LSTMs with 32-bit weight precision for different number of
cells (256, 512, and 1,024) and compression rates (1× to 16×)
are shown. In all experiments, LSTM networks trained with two-
tier HCGS achieve noticeably lower PER than single-tier CGS
for the same target compression. The three-tier HCGS shows
marginal PER improvement over two-tier HCGS for LSTMs
with 1,024 cells, but worse PER for LSTMs with 256 and 512
cells. Four-tier HCGS resulted in worse PER results compared
to three-tier HCGS, hence was not included in Figure 3.

We believe the hierarchical sparsity leads to the improved
accuracy of the networks. Sparse weights with fine granularity
tend to form a uniform sparsity distribution even within smaller
regions of the weight matrix. This property will lead to extremely
sporadic and isolated connections when the target compression
rate is high. However, the grouping of sparse weights within the
hierarchical structure of HCGS allows densely connected regions
to be formed even when the target compression rate is high. As
two-tier HCGS outperforms single-tier CGS in terms of accuracy
and three-tier HCGS leads to marginal/worse performance than
two-tier HCGS, we focused on LSTM training with two-tier
HCGS for the reported results in Section 3.3 and 3.4.

3.3. LSTM results for TIMIT

For the TIMIT corpus, we trained 2-layer LSTMs for a number
of different LSTM cells (256, 512 and 1,024), compression
rates (2×, 4×, 8× and 16×) and weight quantization schemes
(32-bit, 6-bit and 3-bit), Figure 4. shows the compiled PER
and weight memory curves of HCGS-based LSTMs. For a
similar memory footprint, we observe that wider sparse networks
perform better than narrower dense networks, similar to what
was reported in [7, 26]. For example, a 1,024-cell network with
8× compression shows a lower PER than a 512-cell network
with 2× compression. The Pareto front curve in Figure 4 offers
the lowest PER for the smallest memory in the search space.

3.4. LSTM results for TED-LIUM

For the TED-LIUM corpus, we trained 3-layer LSTMs for a
number of different LSTM cells (256, 512 and 1,024), compres-
sion rates (2×, 4×, 8× and 16×) and weight precision schemes
(32-bit, 6-bit and 3-bit). Figure 5 shows the compiled WER and
RNN weight memory curves. Similar to Figure 4, we find that
a 1, 024-cell network with 8× compression results in a lower
WER than a 512-cell network with 2× compression. The Pareto
front curve is extracted and shown in Figure 5.
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Figure 4: PER vs. RNN weight memory results for various
2-layer LSTMs for TIMIT.

Figure 5: WER vs. RNN weight memory results for various
3-layer LSTMs for TED-LIUM.

The authors of [27] reported that wider CNNs can lower the
precision of activations/weights than shallower counterparts, for
the same or even better accuracy. However, in this work, we
do not see such trends with LSTMs for TIMIT or TED-LIUM.
Especially when combined with structured compression, we find
that LSTMs are more sensitive to low-precision quantization, so
that LSTMs with medium (e.g. 6-bit) precision show the best
trade-off between PER/WER and weight memory compression.

3.5. Comparison with learned sparsity and prior works

For comprehensive comparison, we implemented learned spar-
sity methods of Guided-CGS (Section 2.3), group Lasso [20], L1
normalization [7] and magnitude-based pruning (MP). To obtain
block-wise sparsity for group Lasso scheme, block sizes similar
to that of single-tier CGS are chosen. The sparsity for group
Lasso and L1 schemes are obtained through a final pruning op-
eration conducted after training. For every scheme, we applied
the same sparsity for all weight matrices (32-bit precision) in
2-layer 512-cell LSTMs, and Figure 6 shows the comparison
results. Single-tier Guided-CGS shows better PER than HCGS
for compression ratios up to 4×, but PER worsens substantially
for larger compression ratios. This sharp increase in PER is
observed for group Lasso, L1 and MP schemes as well, which
can be attributed to the congestion of selected groups in small
regions of weight matrices caused by the regularization function.
The pre-determined random sparsity in HCGS ensures that con-
gestion is avoided when selecting blocks within weight matrices,
resulting in a much more graceful PER degradation for large

Figure 6: PER (TIMIT) comparison between HCGS and learned
sparsity methods.

Figure 7: PER and memory comparison with prior LSTM works.

(>4×) compression ratios. The effectiveness of random pruning
was also demonstrated in [28], where the pruned DNN recovered
the accuracy loss by fine-tuning the remaining weights.

Figure 7 compares the total RNN weight memory and PER
for prior LSTM works with structured compression [10, 29] and
a baseline uncompressed LSTM [24], with the Pareto front curve
obtained with the proposed HCGS-based LSTMs. It can be seen
that the datapoints in the Pareto front of HCGS provide lower
PER while requiring less storage for the LSTM weights.

4. Conclusion
In this paper, we present HCGS as a new training algorithm
for LSTMs, targeting hierarchical structured sparsity and low-
precision quantization. HCGS allows large compression (16×)
of LSTM weights with graceful error rate degradation, while min-
imizing the index memory (∼1%). Experiments conducted on
the TIMIT and TED-LIUM corpora demonstrated the effective-
ness of HCGS across various LSTM RNNs. We also derived the
Pareto front by jointly optimizing HCGS-based structured com-
pression, low-precision quantization and the number of LSTM
cells in RNNs. HCGS results in the best trade-off between accu-
racy and LSTM memory when compared to prior compression
works and other learned sparsity methods for LSTMs.
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