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Abstract

End-to-end speech recognition has become popular in re-
cent years, since it can integrate the acoustic, pronunciation and
language models into a single neural network. Among end-
to-end approaches, attention-based methods have emerged as
being superior. For example, Transformer, which adopts an
encoder-decoder architecture. The key improvement introduced
by Transformer is the utilization of self-attention instead of re-
current mechanisms, enabling both encoder and decoder to cap-
ture long-range dependencies with lower computational com-
plexity. In this work, we propose boosting the self-attention
ability with a DFSMN memory block, forming the proposed
memory equipped self-attention (SAN-M) mechanism. Theo-
retical and empirical comparisons have been made to demon-
strate the relevancy and complementarity between self-attention
and the DFSMN memory block. Furthermore, the proposed
SAN-M provides an efficient mechanism to integrate these
two modules. We have evaluated our approach on the pub-
lic AISHELL-1 benchmark and an industrial-level 20,000-hour
Mandarin speech recognition task. On both tasks, SAN-M sys-
tems achieved much better performance than the self-attention
based Transformer baseline system. Specially, it can achieve a
CER of 6.46% on the AISHELL-1 task even without using any
external LM, comfortably outperforming other state-of-the-art
systems.

Index Terms: speech recognition, end-to-end, attentional
model, Transformer, san-m

1. Introduction

Conventional automatic speech recognition (ASR) systems usu-
ally adopt the hybrid architecture [1], which consists of separate
acoustic, pronunciation and language models (AM, PM, LM).
Recently, so-called end-to-end (E2E) approaches have rapidly
gained prominence in the speech recognition community. End-
to-end ASR systems fold the AM, PM and LM into a single
neural network that dramatically simplifies the training and de-
coding pipelines. Two popular approaches for this are neural
networks with Connectionist Temporal Classification (CTC) -
like criteria [2, 3] and attention-based models [4,5]. The CTC-
based approach has demonstrated its superiority over hybrid ar-
chitecture, however, it requires an external LM for good perfor-
mance [6,7]. Unlike CTC-based approaches, attention-based
models generate character sequences without any unreasonable
independence assumption between characters, which enables it
to effectively learn an implicit language model.

A typical attention-based model could be divided into
two main components; an encoder and a decoder, which are
jointly trained towards maximizing the likelihood of target se-
quences generated from acoustic feature sequences. In early
works [4,8], long short-term memory neural networks (LSTMs)
were widely used to model long-term dependencies among
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Figure 1: [lllustration of: a) the architecture of encoder and
decoder. b) the SAN-M architecture (top left).

acoustic features in the encoder and output sequences in the
decoder. The attention module inside the decoder interacts be-
tween the output representations of the encoder and the hidden
states of the decoder, to compute context vectors. LSTM-type
networks have a strong ability to capture long-term dependen-
cies within the sequential data using the mechanism of recur-
rent feedback. However, they suffer from the high computa-
tional complexity and a ‘painful’ training process, i.e., gradient
vanishing [9]. Therefore, many authors have been inspired to
search for more computationally-efficient and flexible architec-
tures for sequential modeling.

In the past few years, some efficient models, e.g., con-
volutional neural networks [10] and time-delay neural net-
works [11], have been employed to improve the training pro-
cess. Specially, Zhang et al. proposed a deep feed-forward se-
quential memory network (DFSMN) to replace LSTM in hy-
brid architectures [12, 13] and in CTC-based models [14, 15].
More recently, Transformer has become popular in seq2seq
tasks, e.g., neural machine translation [16], ASR [17-20], and
has shown very promising performance. The key improvement
is the utilization of self-attention instead of recurrent models,
e.g., LSTM, to model feature sequences in both encoder and
decoder. This enhances the ability to capture long-range de-
pendencies with lower computational complexity and to enable
more parallelizable training.

Both self-attention and DFSMN memory blocks was pro-
posed to replace LSTM for sequential modeling. Self-attention
has powerful long-term dependency modeling abilities inside
the full sequence [16]. Unlike self-attention, a single DEFSMN
memory block layer was designed to model local-term depen-
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Figure 2: Self-attention image maps from different encoder lay-
ers for a given sequence.

dencies, with the long-term contexts captured by stacking multi-
ple layers [12]. To some extent, the self-attention and DFSMN
memory block seems complementary for each other. Thus, in
this work, we aim to design a new structure that exploits the
complementarity between self-attention and DFSMN memory
blocks, under the framework of attention-based models. Firstly,
we have made theoretical and empirical comparisons between
self-attention and DFSMN memory blocks.  Secondly, we
have designed a new structure called memory equipped self-
attention (SAN-M) to effectively combine the strength of both.
You et al. proposed inserting self-attention layers into DEFSMN
for hybrid architectures [21]. In contrast, we propose incorpo-
rating these into E2E ASR models. Furthermore, the proposed
SAN-M combines them both within a single basic sub-layer, in
deep-fusion fashion.

We report extensive experiments on the public AISHELL-
1 benchmark and an industrial-level 20,000-hour Mandarin
speech recognition task. On both tasks, SAN-M based systems
achieve much better performance than the self-attention based
Transformer baseline system. Specially, achieving 6.46% CER
on AISHELL-1 even without an external LM, which is the best
performance on this task to date (shown later in Table.2).

2. The proposed methods
2.1. Overview

Transformer was first proposed for neural machine transla-
tion [16], where it obtained state-of-the-art results on many
tasks. It was then introduced into speech processing tasks, e.g.,
ASR [17,18] and text-to-speech [22].

As shown in Fig. 1 a), our network follows the overall ar-
chitecture of Transformer [16], which consists of an encoder
and a decoder. The former maps an input sequence X to a se-
quence of hidden representations Z and consists of N blocks
of basic sub-layer and feed-forward sub-layer. The decoder,
meanwhile, generates one element of output sequence Y at
each time step, consuming representations Z. As an auto-
regressive decoder, it consumes the previously produced char-
acters as additional inputs when producing the next character at
each step [23]. It consists of three components. The first com-
ponents is M blocks which each consist of a feed-forward sub-
layer, a unidirectional basic sub-layer and a multi-head attention
sub-layer. Then K blocks which each comprise a feed-forward
and a unidirectional basic sub-layer. The last component is a
single feed-forward sub-layer to output characters.
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Figure 3: Visualization of the learned filters(averaged by filter
order) of DFSMN memory blocks in different encoder layers.

In this paper, we will firstly give a brief review of self-
attention and DFSMN memory block. Then we will incorporate
them into the (unidirectional) basic sub-layer respectively. The-
oretical analysis and empirical result comparisons will deter-
mine the strength of this approach. Furthermore, we present the
proposed new structure, memory equipped self-attention (SAN-
M) as the (unidirectional) basic sub-layer to effectively combine
the strength of self-attention and DFSMN.

2.2. Multi-Head Attention

Multi-head attention was proposed to jointly attend informa-
tion from different representation subspaces at different posi-
tions [16]. It could be formulated as:

MultiHead(Q, K, V) = [heady, ..., headn ]W? (1)

head; = Attention(Q;, Ks, Vi) 2)

(Qi,Ki, Vi) = (HWZ XW XW/)  (3)

Where Q, K, V are queries, keys and values respectively.
The projections are parameter matrices W? € R¥modeixdy
WzK c Rdmodelxdk’ WY € R%modeixdy, and WP ¢
R"dv*dmodet - b is the number of heads, dpmode; is the model
dimension and dj is the key dimension. X € R”*®model and
H e RT Xdmodet gre the inputs. For each head, “scaled dot-

product attention” [16] was adopted as the attention mechanism.
Given that, the outputs are formulated as:

QK
Vdy

Attention(Q;, K;, V;) = softmax { } Vi %)

2.3. Memory Block

DFSMN [13] improved on the FSMN architecture by introduc-
ing skip connections and memory strides. It consists of three
components: a linear projection, a memory unit and a weight
connection from memory unit to the next hidden sub-layer. The
key elements in DFSMN are the learnable FIR-like memory
blocks, which are used to encode long-context information into
a fixed-size representation. As a result, DFSMN is able to
model long-term dependencies in sequential data without us-
ing recurrent feedback. The operation in the [-th memory block
takes the following form:

h; = max(W*m; ' + b;,0) ©)

pt = Vihi + v, (6)
NY Nj

m{ =m; ' +p;+ > 8 OP;_s it P C;OPrrsyes (7)
1=0 Jj=1

Mt = [ml{,mg, ...,meT] 8)
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Figure 4: Image maps from three decoder layers to illustrate
self-attention from a given sequence.
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Figure 5: Visualization of the learned filters(averaged by filter
order) in DFSMN memory blocks from different decoder lay-
ers(mirrored).

Here, M is the memory block. h¢ and p?¢ denote the outputs
of the ReLU layer and linear projection layer respectively. m¢
denotes the output of the /-th memory block. N and N# denote
the look-back and lookahead order of the ¢-th memory block,
respectively, while s; and sz are their respective stride factors.

2.4. Comparing Self-Attention and Memory Blocks

In this section, we will make an in-depth comparison between
self-attention and DFSMN memory blocks. Self-attention is an
attention mechanism where the queries, keys and values are
from the same sequence in Eq. (4). Then the attention vector c;
is calculated as:

T t T
ct = Zat,jhj = Zat,ihi + Z o jhy ©
j=0 =0

j=t+1

Where oy = (a1, ..., az, 1) are the weights of self-attention
from a sequence at time ¢. In terms of formulation, Eq. (9) is
similar to the scalar FSMN memory block proposed in [12]. If
we take multi-head attention into consideration, Eq. (1) is sim-
ilar to the vectorized FSMN memory block defined in Eq. (8).
To summarise, the outputs of both DFSMN memory block and
self-attention are computed by weighting and then summing the
feature vectors. The important difference is how to derive the
weights.

As for self-attention, weights are calculated dynamically
depending on the features themselves, which could be viewed
as context-dependent (CD) coefficients. This could learn time
dependencies inside the full sequence. However, it may not be
efficient since it must compute every time pair in the full se-
quence. The computational complexity is thus O(n? - d) '.

In terms of DFSMN memory block, weights are context-
independent (CI) coefficients, and we could view this as learn-
ing the statistical average distribution of the whole dataset. As
defined in Eq. (7), the range of context dependencies is con-
trolled by N{ and N&, which means it is more computation-
ally efficient and flexible. The computational complexity is

' and d are the length and dimension of a sequence respectively.

Table 1: Performance comparison of three basic sub-layer types
on AISHELL-1.

CER(%)
Encoder | Decoder | Parameter(M) Dev [ Tost
SAN SAN 46 6.58 | 7.33
DFSMN | DFSMN 37 5.92 | 6.81
SAN-M | DFSMN 43 574 | 6.46

Table 2: State-of-the-art comparison on AISHELL-1.

CER(%)
Model E2E | LM Dev [ Tost
TDNN-LEMMI [24] N Y 6.44 | 7.62
SA-T [19] Y N 8.30 | 9.30
LAS [25] Y Y - 8.71
Joint CTC/attention [26] Y Y 6.00 | 6.70
Proposed SAN-M Y N | 5.74 | 6.46

O((N{ + N£) - n - d). Though the receptive field of a sin-
gle layer is small, it can still model long-range dependencies by
stacking multiple layers.

We plot the CD-coefficients of self-attention in different
encoder layers for a given sequence in Fig. 2. A strong di-
agonal component is evident, which grows more diffuse and
wider as we progress through deeper layers. This reveals that
learned features are mainly locally dependent, even though self-
attention is able to model long-term dependencies over the full
sequence. In Fig. 3, showing the CI-coefficients of DFSMN
memory for the same encoder blocks, we see a shape resem-
bling a tower whose width increases as we progress through
deeper layers. For comparison, we also plot the self-attention
matrix weights and DESMN memory block vectors for the same
decoder layers in Figs. 4 and 5. These show that self-attention
has learned much longer-range dependencies than the DFSMN
memory block. Our investigations have found that in practice,
self attention for acoustic features in the encoder is often domi-
nated by short-term dependencies. Consequently, it may there-
fore not be effectively capturing longer-term dependencies.

From the discussion above, we can briefly summarise: (a)
Self-attention has the ability to learn long-range dependencies
inside the full sequence, yet the learned features are not neces-
sarily always long-term dependent, particularly in the encoder.
(b) DFSMN memory blocks tend to learn local dependencies.
Meanwhile they are more computationally efficient, and flex-
ible, than self-attention. (c) While self-attention learns long-
term context dependencies focusing on single features, DFSMN
memory blocks learn local-term dependencies from the statisti-
cal average distribution over the whole dataset, meaning that
they may well be more robust in practice.

2.5. Memory Equipped Self-Attention

From Section 2.4, we found that self-attention tends to learn
CD-coefficients within a single feature whereas DFSMN mem-
ory blocks tend to learn CI-coefficients from the statistical av-
erage distribution of whole dataset. We think that the two struc-
tures might therefore be complementary to each other. Follow-
ing that insight, we designed memory equipped self-attention
(SAN-M) to combine the strengths of both approaches. As
shown in Fig. 1 b), a DFSMN filter has been added on the
values inside the Multi-Head Attention to output memory



Table 3: Comparison of models on the 20000-hour Mandarin speech recognition task.

| Models [ CICI | CTC2 | EXPI | EXP2 | EXP3 | EXP4 | EXP5 |
Encoder DFSMN | DFSMN | SAN | DFSMN | SAN-M | SAN-M | SAN-M
Decoder - - SAN | DFSMN | DFSMN | DFSMN | DFSMN
dbasic - dysn - - 5122048 | 512-2048 | 512-2048 | 256-1024 | 320-1280
N - : 10 10 10 40 40
M - - 6 6 6 6 6
K - - 0 0 0 6 6
Parameter (M) 25 45 59 47 55 2 63
Common Set (CER%) | 11.6 9.9 9.8 10.2 9.4 9.0 8.3
Far-field Set (CER%) | 20.3 17.7 15.0 16.7 143 13.7 12.5

block. The memory content is then added to the output of the
Multi-Head Attention, which could be formulated as:

Y = MultiHead(Q, K, V) + M(V) (10)

Where Y denotes the output of SAN-M. Unidirectional SAN-
M means that both self-attention and DESMN memory blocks
themselves are unidirectional.

3. Experiments
3.1. Experimental Setup

We conduct extensive experiments to evaluate the performance
of self-attention, DFSMN memory block and the combined
SAN-M on Mandarin speech recognition tasks. We report
results on the 170-hour AISHELL-1 released in [24] and an
industrial-level 20000-hour-task described in [15], collected
from multiple domains including news, sport, tourism, game,
literature, education etc. It is divided into a training set and
a development set in the ratio of 95% to 5%. A far-field set
consisting of about 15 hours data, and a common set consist-
ing of about 30 hours data, are used to evaluate the perfor-
mance. Acoustic features are 80-dimensional energy-based
log-mel filter-banks (FBK), computed on a window of 25ms
with 10ms shift. A low frame rate (LFR) is made by stack-
ing consecutive frames into a size 7 context window (3+1+3)
and then down-sampling the input frame rate to 60ms. Acous-
tic modeling units are Chinese characters, which are 4233 and
9000 for AISHELL-1 and the 20,000-hour tasks respectively.
For the E2E system, all models are trained to output characters
directly, without using any external LM.

All E2E experiments are conducted with the Open-
NMT [27] toolkit. We adopt the LazyAdamOptimizer with
61 = 0.9, B2 0.998, and a noam_decay_v2 learning rate
strategy with d = 512, warmup-n = 8000, and k = 1 [16].
Label smoothing and dropout regularization of 0.1 are included
to prevent over-fitting.

3.2. AISHELL-1 Task

We first evaluate the performance on AISHELL-1. For all sys-
tem, we set N = 6, M = 3, K = 0. The basic sub-layer
output dimension, denoted dpqsic, and feed-forward sub-layer
dyfn, are set to 512 and 2048 respectively. SpecAugment [28]
is employed to augment the dataset.

From Table 1, we see that incorporating SAN-M in a ba-
sic sub-layer obtains the best performance, compared to self-
attention and DFSMN memory block. Specially, SAN-M
achieves 11.8% relative improvement over self-attention. From
the results, it is clear that incorporating DFSMN memory blocks
can boost the performance of self-attention.

We also compared the proposed SAN-M with other the pop-
ular systems in Table 2. The “LM” column denote whether an
external LM is added when decoding. TDNN-LFMMI is a
popular baseline reported by the dataset releaser [24]. SA-T
was proposed to replace the RNN with self-attention in RNN-T
to obtain a performance improvements [19]. LAS extended
the attention-based model with an LM when decoding [25].
Shigeki et al. [26] proposed jointly training CTC and attention-
based models to achieve state-of-the-art performance. Yet the
proposed SAN-m system obtained slightly better performance
even without using an external LM (and being more elegant).

3.3. 20,000-hour Tasks

We extend our experiments to evaluate on the 20,000-hour
dataset. The configuration of different systems and their re-
sults are shown in Table 3. For the CTC-based systems [15],
we trained two DFSMN-CTC-sMBR systems with 10 and 20
DFSMN-layers, denoted CTC1 and CTC2 respectively. dpgsic
and dy s, are the same as described in Section 3.2.

Let us first compare EXP1 and EXP2. The Common Set
mainly contains near-field short duration records, and the DF-
SMN memory block shows comparable performance with self-
attention on this task. F'ar- field, which mainly contains long-
duration records, highlights the superiority of self-attention at
long-distance modeling.

Now comparing EXP 1 and EXP 3, we see performance im-
proves in the system with fewer parameters, in accord with Sec-
tion 3.2. This confirms that self-attention and DFSMN mem-
ory blocks are complementary, and SAN-M is able to effec-
tively combine their strengths. When we further explore config-
urations, we find that ‘thinner’ and ‘deeper’ structures achieve
more performance improvements, as shown in EXP 4 and 5.
Compared to the EXP1 baseline, EXP5 obtains 15.3% and 17%
relative improvements on Common Set and Far- field tasks
respectively, yet only increases the model size by less than 7%.

4. Conclusions

In this work, we proposed memory equipped self-attention
(SAN-M) to combine the strength of self-attention and DFSMN
memory blocks for end-to-end speech recognition. Our theoret-
ical analysis and empirical comparisons concur in demonstrat-
ing the complementarity of the techniques. This is confirmed
by extensive experiments on two Mandarin ASR tasks. On the
AISHELL-1 task, SAN-M obtains a 11.8% relative improve-
ment and matches other state-of-the-art systems yet does not
require an external LM. Meanwhile on a 20,000-hours Man-
darin ASR task, SAN-M outperforms the self-attention based
Transformer baseline by over 10%.
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