8. Appendix
8.1. Proof of Theorem 1

Proof. Let’s denote
g, VM = VA (AW ). a6)

Then the variance estimator can be written as
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Note that E (£ ) = E(t,) =0,

We will first show that the first term of the right hand side
of (17) converges to o2 in Lo. Notice that
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as n — oo and (thus) d,, — oo. Then it suffices to show
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This is true since
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when n and d,, are sufficiently large. Here the first less than
or equal to sign follows from the assumption that for any two
blocks k < k', AWéf_l)d"H and AWéf/_l)d"H are uncor-
related, and the second less than or equal to sign follows from
the assumption that n>E(AW,, — x)* is uniformly bounded.

Now we only need to show that the second term of the right
hand side of (17) converges to 0 in L2, or equivalently, ¢,, con-
verges to 0 in Ly.

Note that
tn = Vdn (AW, — 1) (24)
and thus
E(th) = d2E(AW,, — p)* = 0 (25)
as n — oo since n2E(AW,, — u)* is bounded. O

8.2. Proof of Corollary 1.1

Proof. 1t suffices to show
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under the relaxed assumption. Consider for any k < k'
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Then under the assumption that E(|(Z; — p)(Z; — u)(Zy —
w)(Zj —u)]) < eif nis sufficiently large for any , j and @', j',
we have
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which converges to 0 as n — co. O



