
8. Appendix
8.1. Proof of Theorem 1
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We will first show that the first term of the right hand side
of (17) converges to �2 in L2. Notice that
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as n ! 1 and (thus) dn ! 1. Then it suffices to show
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This is true since
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when n and dn are sufficiently large. Here the first less than
or equal to sign follows from the assumption that for any two
blocks k < k0, �W (k�1)dn+1
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and �W (k0�1)dn+1
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are uncor-

related, and the second less than or equal to sign follows from
the assumption that n2E(�Wn � µ)4 is uniformly bounded.

Now we only need to show that the second term of the right
hand side of (17) converges to 0 in L2, or equivalently, tn con-
verges to 0 in L4.

Note that
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and thus
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as n ! 1 since n2E(�Wn � µ)4 is bounded.

8.2. Proof of Corollary 1.1

Proof. It suffices to show
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under the relaxed assumption. Consider for any k < k0
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Then under the assumption that E(|(Zi � µ)(Zj � µ)(Zi0 �
µ)(Zj0 �µ)|)  ✏ if n is sufficiently large for any i, j and i0, j0,
we have

Var

 
1
Kn

KnX

k=1

⇣
t(k�1)dn+1
dn

⌘2
!

(31)

 1
K2

n

KnX

k=1

E
⇣
t(k�1)dn+1)
dn

⌘4
(32)

+
2
K2

n

X

1k<k0Kn

E
⇣
t(k�1)dn+1
dn

t(k
0�1)dn+1

dn

⌘2
(33)

 1
K2

n
(KnC +K2

n✏) =
C
Kn

+ ✏. (34)

which converges to 0 as n ! 1.


